Lecture 8

Sequence alignment and evolution

 mutations

Edit graph & alignment algorithms
 – Smith-Waterman, Needleman-Wunsch

• Local vs global

Aligning sequences

- Major uses in genome analysis:
 - To find relationship between sequences from "same" genome
 - (still need to allow for discrepancies due to errors/polymorphisms)

E.g.

- finding gene structure by aligning cDNA to genome
- assembling sequence reads in genome sequencing project
- NextGen applications: "Resequencing", ChIPSeq, etc
- To detect evolutionary relationships:
 - illuminates function of distantly related sequences under selection
 - finds corresponding positions in neutrally evolving sequence
 - to illuminate mutation process
 - helps find non-neutrally evolving (functional) regions

- Often we're interested in details of alignment

 (i.e. precisely which residues are aligned),
 but
- sometimes only interested in whether alignment score is large enough to imply that sequences are likely to be related

Sequences & evolution

- Similar sequences of sufficient length usually have a common evolutionary origin
 - i.e. are *homologous*
- For a pair of sequences
 - "% similarity" makes sense
 - "% homology" doesn't
- In alignment of two homologous sequences
 - differences mostly represent *mutations* that occurred in one or both lineages, but
 - Not all mutations are inferrable from the alignment

Mutation types

- single-base substitution error by DNA polymerase
 most common type?
- strand slippage error by polymerase, inserting or deleting one or more bases
- DNA damage (radiation, or chemical) + errorprone repair, possibly altering more than one nucleotide, e.g.
 - CpG (hydrolytic deamination of methyl C)
 - dinucleotide changes, perhaps UV-induced
 dipyrimidine lesions (*Science* 287: 1283-1286)

- *Rearrangements* (break and rejoin)
 - Inversion (2 breaks on same chromosome)
 - Translocation (2 breaks on different chromosomes)
 - More complex (> 2 breaks)
- *Duplication* of a segment
- *Deletion* of a segment
- *Insertion/excision* of transposable element
- Acquisition of DNA from another organism ("*horizontal transfer*")

Mutation *rates* may depend on:

- lineage (organism): no universal "molecular clock"
- sex: e.g. in mammals, mut rate higher in males than females
- type of change e.g.
 - replacement ("substitution") of one nucleotide by another more freq than indels (insertions or deletions)
 - *transition* replacements
 - pyrimidine \rightarrow pyrimidine (T \leftrightarrow C), or purine \rightarrow purine (A \leftrightarrow G) more freq than *transversion* replacements
 - pyrimidine \rightarrow purine, or purine \rightarrow pyrimidine
 - GC or AT bias in some organisms
 - e.g. $G \rightarrow A$ more freq than $A \rightarrow G$ in most eukaryotes

- causes most genomes to be relatively A+T rich

- (small) deletions generally more frequent than (small) insertions

- sequence context (e.g. CpG effect)
- position in sequence some sites more slowly changing than others, due to
 - selection e.g. in coding sequences,
 - indels strongly selected against because would disrupt reading frame;
 - non-synonymous changes less freq than synonymous
 - variation in underlying mutation rate not understood!
 (cf. mouse genome paper)

- typical per base subst rates in non-coding DNA:
 - $\sim 1 \ge 10^{-9}$ per base per year (order of magnitude)
 - in humans, about 10^{-9} / base / year, $\Rightarrow 2 \ge 10^{-8}$ / base / generation $\Rightarrow 120$ / diploid genome / generation (recent de novo estimates are lower!)
- freq of gene duplication is ~ 10⁻⁸ per gene per year (*Science* 290: 1151-1155)
- freq of simultaneous dinuc substitutions is ~ 10⁻¹⁰ per dinuc site per year (*Science* 287: 1283-1286)
- freq of CpG ⇒ TpG or CpA changes is ~10-fold higher (per CpG) than other substs in mammalian DNA;
 - may account for $\sim 20\%$ of all substitutions.

Complications

• Parallel & back mutations

⇒ estimating total # of mutations requires statistical modelling

- Insertion/deletion, & segmental mutations
 - ⇒ finding the correct alignment can be problematic ('gap attraction')

-- even in closely related sequences!

Sequence alignments correspond to *paths* in a *DAG*!

The Edit Graph for a Pair of Sequences

- The edit graph is a DAG.
 - Except on the boundaries, the nodes have in-degree and out-degree both 3.
- The depth structure is as shown on the next slide. Child of node of depth *n* always has
 - $\operatorname{depth} n + 1$ (for a horizontal or vertical edge), or
 - $\operatorname{depth} n + 2$ (for a diagonal edge).

- *Paths* in edit graph correspond to *alignments* of subsequences
 - each edge on path corresponds to an alignment column
 - diagonal edges correspond to column of two aligned residues
 - horizontal edges correspond to column with
 - residue in 1st (top, horizontal) sequence
 - gap in the 2^d (vertical) sequence
 - vertical edges correspond to column with
 - residue in 2^d sequence
 - gap in 1st sequence

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

Weights on Edit Graphs

- Edge weights correspond to scores on alignment columns.
- Highest weight path corresponds to highest-scoring alignment for that scoring system.
- Weights may be assigned using
 - a substitution score matrix
 - assigns a score to each possible pair of residues occurring as alignment column

and

- a gap penalty
 - assigns a score to column consisting of residue opposite a gap.
- Example for protein sequences: BLOSUM62

BLOSUM62 Score Matrix

GAP -12 -2

G H I L K M R Ε Ρ S Α Ν D С 0 F Т W Y V В Ζ Х * 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 0 -2 -1 4 -1 -2 -21 0 - 3 - 20 - 4А 5 0 -2 -31 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 R -1 0 - 1 - 46 1 -3 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 N - 20 0 0 - 1 - 46 -3 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D - 2 - 21 0 4 1 - 1 - 4-3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 -3 -3 С 0 2 -2 0 0 -3 5 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 -1 1 0 3 - 1 - 4E -1 \cap 0 2 - 4 2 5 -2 0 - 3 - 31 -2 -3 -1 0 -1 -3 -2 -21 4 - 1 - 40 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4 G \cap -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 1 - 1 - 30 -2 2 -3 н -2 0 0 0 0 - 1 - 4T -1 -3 -3 -3 -1 -3 -3 -4 -3 2 -3 0 -3 -2 -1 -3 -1 4 1 3 -3 -3 -1 -4 2 4 -2 2 0 -3 -2 -1 -2 -1 L -1 -2 -3 -4 -1 -2 -3 -4 -3 1 - 4 - 3 - 1 - 41 1 -2 -1 -3 -2 5 -1 -3 -1 K -1 2. 0 - 1 - 30 -1 -3 -2 -2 0 1 - 1 - 41 M - 1 - 1 - 2 - 3 - 10 -2 -3 -2 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4 F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4 0 -1 -2 -2 0 -1 -2 -1 1 - 3 - 2 - 21 -1 0 4 S 1 0 -1 0 0 0 0 - 4Т 0 - 10 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 - 4W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 - 4 - 3 - 2 112 - 3 - 4 - 3 - 2 - 42 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 7 -1 -3 -2 -1 -4 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4 V 0 -3 -4 0 -3 -3 -2 4 - 3 -1 0 -1 -4 -3 -3 B -2 -1 3 0 1 4 1 -1 - 4 4 -2 0 -3 -3 1 - 31 -1 -3 -1 0 -1 -3 -2 -27 -1 0 0 3 1 4 -1 -4 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4 Х 1 • Matrix entries are of form

 $M(r, s) = \log_{a}(h_{r,s} / b_{r,s}) \text{ (rounded to int) where}$ $h_{r,s} = \text{freq of } \frac{r}{s} \text{ in homologous* seq alignments}$ * `62` refers to specific set of homologue alignments $b_{r,s} = \text{freq of } \frac{r}{s} \text{ in `background' (random) alignments}$ $a \text{ (the logarithm base)} = \sqrt{2} \text{ (`half bits')}$

- amino acid pairs with positive scores tend to be
 - chemically similar
 - in *same row or col* of genetic code table

Copyright 1999 Access Excellence @ the National Health Museum. All rights reserved

The Genetic Code

Alignment algorithms

- *Smith-Waterman* algorithm to find highest scoring alignment
 - = dynamic programming algorithm to find highestweight path
 - is a *local* alignment algorithm:
 - finds alignment of subsequences rather than the full sequences.
- Can process nodes in any order in which parents precede children. Commonly used alternatives are
 - depth order
 - row order
 - column order

- If constrain path to
 - start at upper-left corner node and
 - extend to lower-right corner node,

get a *global* alignment instead

- This sometimes called *Needleman-Wunsch algorithm*
 - (altho original N-W alg treated gaps differently)
- \exists variants which constrain path to
 - start on the left or top boundary,
 - extend to the right or bottom boundary.

Complexity

- For two sequences of lengths *M* and *N*, edit graph has
 - (M+1)(N+1) nodes,
 - 3MN+M+N edges,
- time complexity: O(MN)
- space complexity to find

highest score and beginning & end of alignment

is *O*(min(*M*,*N*))

(since only need store node's values until children processed)

space complexity to reconstruct highest-scoring alignment:
 O(MN)

- For genomic comparisons may have
 - $-M, N \approx 10^6$ (if comparing two large genomic segments), or
 - *M* ≈ 10³, *N* ≈ 10⁹ (if searching gene sequence against entire genome);
 - in either case $MN \approx 10^{12}$.
- Time complexity 10¹² is (marginally) acceptable.
- \exists speedups which reduce constant by
 - reducing calculations per matrix cell, using fact that score often 0
 - (our program *swat*).
 - still guaranteed to find highest-scoring alignment.
 - reducing # cells considered, using nucleating word matches
 - (*BLAST*, or *cross_match*).
 - Lose guarantee to find highest-scoring alignment.

Local vs. Global Alignments: Biological Considerations

- Many proteins consist of multiple 'domains' (modules), some of which may be present
 - with similar, but not identical sequence
 - in many other proteins
 - e.g. ATP binding domains, DNA binding domains, protein-protein interaction domains ...

Need *local alignment* to detect presence of similar regions in otherwise dissimilar proteins.

- Other proteins consist of single domain evolving as a unit
 - e.g. many enzymes, globins.
 - Global alignment sometimes best in such cases
 - ... but even here, some regions are more highly conserved (more slowly evolving) than others, and most sensitive similarity detection may be local alignment.

3-D structures of rat Rab Geranylgeranyl Transferase complexed with REP-1, + paralogs. *adapted from* Rasteiro and Pereira-Leal *BMC Evolutionary Biology* 2007 7:140

Multidomain architecture of representative members from all subfamilies of the mammalian RGS protein superfamily.

from www.unc.edu/~dsiderov/page2.htm

29

Similar considerations apply to aligning DNA sequences:

- (semi-)global alignment may be preferred for aligning
 cDNA to genome
 - recently diverged genomic sequences (e.g. human / chimp)
 but local alignment often gives same result!
- between more highly diverged sequences, have
 - rearrangements (or large indels) in one sequence vs the other,
 - variable distribution of sequence conservation,
 - & these usually make local alignments preferable.