_ecture 8

« Sequence alignment and evolution
— mutations

 Edit graph & alignment algorithms
— Smith-Waterman, Needleman-Wunsch

 Local vs global



Aligning sequences

« Major uses in genome analysis:

— To find relationship between sequences from “same” genome
« (still need to allow for discrepancies — due to errors/polymorphisms)
E.Q.
« finding gene structure by aligning cDNA to genome

« assembling sequence reads in genome sequencing project
« NextGen applications: “Resequencing”, ChIPSeq, etc

— To detect evolutionary relationships:
« illuminates function of distantly related sequences under selection

« finds corresponding positions in neutrally evolving sequence
— to illuminate mutation process
— helps find non-neutrally evolving (functional) regions



» Often we’re interested 1n details of alignment
— (1.e. precisely which residues are aligned),

but

« sometimes only interested in whether alignment
score Is large enough to imply that sequences
are likely to be related



Sequences & evolution

 Similar sequences of sufficient length usually
have a common evolutionary origin

— 1.e. are homologous
 For a pair of sequences

— “% similarity”” makes sense

— “% homology” doesn’t

 |In alignment of two homologous sequences

— differences mostly represent mutations that occurred
In one or both lineages, but

— Not all mutations are inferrable from the alignment



Mutation types

» single-base substitution error by DNA polymerase
— most common type?

» strand slippage error by polymerase, inserting or
deleting one or more bases

» DNA damage (radiation, or chemical) + error-
prone repair, possibly altering more than one
nucleotide, e.g.

— CpG (hydrolytic deamination of methyl C)

— dinucleotide changes, perhaps UV-induced
dipyrimidine lesions (Science 287: 1283-1286)



Rearrangements (break and rejoin)

— Inversion (2 breaks on same chromosome)

— Translocation (2 breaks on different chromosomes)
— More complex (> 2 breaks)

Duplication of a segment
Deletion of a segment
Insertion/excision of transposable element

Acquisition of DNA from another organism
(“horizontal transfer™)



Mutation rates may depend on:

 lineage (organism): no universal “molecular clock”
« sex: e.g. In mammals, mut rate higher in males than females
* type of change —e.qg.
— replacement (“substitution’) of one nucleotide by another more
freq than indels (insertions or deletions)
— transition replacements
 pyrimidine — pyrimidine (T <> C), or purine — purine (A < G)
more freq than transversion replacements
 pyrimidine — purine, or purine — pyrimidine
— GC or AT bias in some organisms

* e.g. G—>A more freg than A—>G in most eukaryotes
— causes most genomes to be relatively A+T rich

— (small) deletions generally more frequent than (small) insertions



 seguence context (e.g. CpG effect)

* position in sequence — some sites more slowly changing
than others, due to

— selection — e.g. In coding sequences,

» indels strongly selected against because would disrupt reading
frame;

* non-synonymous changes less freq than synonymous

— variation in underlying mutation rate — not understood!
(cf. mouse genome paper)



typical per base subst rates in non-coding DNA:
— ~1 x 107 per base per year (order of magnitude)
— in humans, about 10-° / base / year, = 2 x 108 / base / generation
= 120 / diploid genome / generation
(recent de novo estimates are lower!)
freq of gene duplication is ~ 10-8 per gene per year (Science
290: 1151-1155)

freq of simultaneous dinuc substitutions is ~ 10-1° per dinuc
Site per year (Science 287: 1283-1286)

freq of CpG = TpG or CpA changes is ~10-fold higher (per
CpG) than other substs in mammalian DNA,;

— may account for ~20% of all substitutions.



(Observed) ALIGNMENT: .acagaatcagggtcccgtta...
(may not be unique!) .accgaatcagg-tcccgtcea. ..

(Unobserved) MUTATION HISTORY (in general, this is not
even inferrablel):  accqaategggteccgtta...

/

...acagaatcgggtcccgtta...
...accgaatcaggtcccgtta...
...acagaatcaggtcccgtta...
/ ...accgaatcaggtcccgtca...
..acagaatcagggtcccgtta...
/ ONLY OBSERVED SEQUENCES \
\

...acagaatcagggtcccgtta ...accgaatcaggtcccgtca...
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Complications

e Parallel & back mutations

= estimating total # of mutations requires
statistical modelling

* Insertion/deletion, & segmental mutations

= finding the correct alignment can be
problematic (‘gap attraction’)

-- even In closely related sequences!
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Sequence alignments correspond to
paths in a DAG!
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The Edit Graph for a Pair of Sequences
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« The edit graph 1s a DAG.

— Except on the boundaries, the nodes have in-degree and
out-degree both 3.

» The depth structure is as shown on the next slide.
Child of node of depth n always has
— depth n + 1 (for a horizontal or vertical edge), or
— depth n + 2 (for a diagonal edge).
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Depth Structure
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» Paths in edit graph correspond to alignments of
subsequences

— each edge on path corresponds to an alignment column

— diagonal edges correspond to column of two aligned
residues
— horizontal edges correspond to column with
» residue in 1%t (top, horizontal) sequence
e gap in the 29 (vertical) sequence
— vertical edges correspond to column with

» residue in 29 sequence
e gap in 15 sequence
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Above path corresponds to following alignment (w/ lower case letters

aCGTTGAATGAccca
gCAT-GAC-GA

considered unaligned):



Weights on Edit Graphs

 Edge weights correspond to scores on alignment columns.

 Highest weight path corresponds to highest-scoring
alignment for that scoring system.

« Weights may be assigned using

— a substitution score matrix
e assigns a score to each possible pair of residues occurring as alignment
column

and

— a gap penalty
e assigns a score to column consisting of residue opposite a gap.

— Example for protein sequences: BLOSUMG62
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BLOSUM®G2 Score Matrix
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« Matrix entries are of form
M(r, s) = log,(h, s/ b,) (rounded to int) where

h, ;= freq of ; In homologous™ seq alignments

* 762’ refers to specific set of homologue alignments
. .
b, ;= freq of g in ‘background’ (random) alignments

a (the logarithm base) =2 (‘half bits’)

« amino acid pairs with positive scores tend to be
— chemically similar
— In same row or col of genetic code table

20



C

tRNA
/

O

C

O

/ Y
U c A anticodon AUG
5 A G U codon UAC mRNA 3
* [ I | . &
2nd base in codon
Phe | Ser | Tyr Cys U
U Phe | Ser Tyr Cys c L
5 Leu | Ser | STOP |[sTOP | A o
'g Leu | Ser STOP | Trmp 5 g
o Leu | Pro His Arg U o
k= C Leu | Pro His Arg C 5
2 Leu | Pro Gln Arg A o
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Met | Thr Lys Ary G
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Val Ala | Glu Gly G

The Genetic Code

pesiEsa WL [y WNasnyy YIESH |BUDNE) B E BOUS||E3x] s2E00Y gaE] JyEutdon

21



Alignment algorithms

« Smith-Waterman algorithm to find highest scoring
alignment

= dynamic programming algorithm to find highest-
welight path
— Is a local alignment algorithm:

» finds alignment of subsequences rather than the full sequences.

 Can process nodes in any order in which parents
precede children. Commonly used alternatives are
— depth order

— row order
— column order

22



Depth Structure
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» |f constrain path to
— start at upper-left corner node and
— extend to lower-right corner node,

get a global alignment instead

e This sometimes called Needleman-Wunsch
algorithm

— (altho original N-W alg treated gaps differently)

7 variants which constrain path to
— start on the left or top boundary,
— extend to the right or bottom boundary.
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Complexity

For two sequences of lengths M and N, edit graph has
— (M+1)(N+1) nodes,
— 3MN+M+N edges,
time complexity: O(MN)
space complexity to find
highest score and beginning & end of alignment

IS O(min(M,N))
(since only need store node’s values until children processed)

space complexity to reconstruct highest-scoring alignment:
O(MN)
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 For genomic comparisons may have
— M, N~ 10° (if comparing two large genomic segments), or
— M~ 103, N ~ 10° (if searching gene sequence against entire
genome);
in either case MN ~ 10%2,
« Time complexity 102 is (marginally) acceptable.

1 speedups which reduce constant by

— reducing calculations per matrix cell, using fact that score
often 0

e (our program swat).
» still guaranteed to find highest-scoring alignment.
— reducing # cells considered, using nucleating word matches
« (BLAST, or cross_match).
 Lose guarantee to find highest-scoring alignment.
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Local vs. Global Alignments:
Biological Considerations

* Many proteins consist of multiple ‘domains’ (modules), some of
which may be present
— with similar, but not identical sequence

In many other proteins

— e.g. ATP binding domains, DNA binding domains, protein-protein interaction
domains ...

Need local alignment to detect presence of similar regions in
otherwise dissimilar proteins.

 Other proteins consist of single domain evolving as a unit
— €.¢g. many enzymes, globins.

Global alignment sometimes best in such cases

— ... but even here, some regions are more highly conserved (more slowly
evolving) than others, and most sensitive similarity detection may be local
alignment.
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domain found in other disordered regions
C2-like domain prenyltransferases |
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3-D structures of rat Rab Geranylgeranyl Transferase complexed
with REP-1, + paralogs.

adapted from Rasteiro and Pereira-Leal BMC Evolutionary Biology 2007 7:140
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Multidomain architecture of representative members from all
subfamilies of the mammalian RGS protein superfamily.
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http://www.unc.edu/~dsiderov/page2.htm

Similar considerations apply to aligning DNA sequences:

 (semi-)global alignment may be preferred for aligning
— CDNA to genome
— recently diverged genomic sequences (e.g. human / chimp)

but local alignment often gives same result!
 between more highly diverged sequences, have

— rearrangements (or large indels) in one sequence vs the other,
— variable distribution of sequence conservation,

& these usually make local alignments preferable.
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