Lecture 9

- Improved scoring
 - Affine gap penalties
 - Profiles
- Statistical significance
- Reducing time
 - Word nucleation algorithms

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

BLOSUM62 Score Matrix

GAP -12 -2

G H I L K M Ε Ρ S Α R Ν D С 0 F Т W Y V В Ζ Х * 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 0 - 3 - 20 -2 -1 4 -1 -2 -2 1 0 - 4А 5 0 -2 -31 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 R -1 0 - 1 - 46 1 -3 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 N - 20 0 0 - 1 - 46 -3 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D - 2 - 21 0 4 1 - 1 - 4-3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 -3 -3 0 С 2 -2 0 -3 -1 0 -3 5 0 -3 -2 1 0 -1 -2 -1 -2 0 -1 1 0 0 3 - 1 - 4E -1 \cap 0 2 - 42 5 -2 0 - 3 - 31 -2 -3 -1 0 -1 -3 -2 -21 4 - 1 - 40 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4 G Ο -2 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 1 - 1 - 32 -3 н -2 0 0 0 0 - 1 - 4T -1 -3 -3 -3 -1 -3 -3 -4 -3 2 -3 0 -3 -2 -1 -3 -1 4 1 3 -3 -3 -1 -4 2 4 -2 2 0 -3 -2 -1 -2 -1 L -1 -2 -3 -4 -1 -2 -3 -4 -3 1 - 4 - 3 - 1 - 41 1 -2 -1 -3 -2 5 -1 -3 -1 K -1 2. 0 - 1 - 30 -1 -3 -2 -2 0 1 - 1 - 41 M - 1 - 1 - 2 - 3 - 10 -2 -3 -2 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4 F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 - 4 - 2 - 2 1 3 - 1 - 3 - 3 - 1 - 4 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4 0 -1 -2 -2 0 -1 -2 -1 1 -3 -2 -2 1 -1 0 4 S 1 0 -1 0 0 0 0 - 4Т 0 - 10 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 - 4₩ -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 - 3 - 4 - 3 - 2 - 4Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 2 3 -3 -2 -2 7 -1 -3 -2 -1 -4 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4 V 0 -3 -4 0 -3 -3 -2 4 - 3 -1 0 -1 -4 -3 -3 B -2 -1 3 0 1 4 1 -1 - 43 4 -2 0 -3 -3 1 -3 1 -1 -3 -1 0 -1 -3 -2 -27 -1 0 0 1 4 -1 -4 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4 Х 1

Better Alignment Scoring

- Optimal alignment scoring depends on probabilistic modelling (e.g. LLR scores)
- Limitations of our current approach:
 - 1. each alignment column (edge in WDAG) is scored independently
 - \rightarrow an independence assumption for probability model
 - Score depends only on the residues that are present (via a BLOSUM-type score matrix) i.e. independently of position within sequence

- Ways to allow *partial* non-independence while preserving dynamic programming framework:
 - 1. Enhance graph
 - Allows 'memory' of preceding columns
 - 2. Allow scores to depend on position within the sequence
 - so some substitutions (of same residues) or gaps penalized more heavily than others
 - like a site model!

Gap Penalties

TNAVAHVD----DMPNAL YEAAIQLQVTGVVVTDATL

- Usual scoring scheme assigns same penalty *g* to each gap edge, so
 - weights on extended gaps of size *s* are *linear* in *s*, i.e.
 - total gap penalty $gap(s) = s \times g$.
 - e.g. in above example, if each g = -6, total penalty on gap would be

$$gap(5) = 5 \times -6 = -30$$

- Would like more flexible gap penalties:
- In proteins, insertions & deletions are rare;
 - but when occur, often consist of several residues, because
 - they are in regions (loops) tolerant of length changes
 - at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
 - otherwise, would change reading frame
- In noncoding DNA sequence,
 - the most common indel size is 1
 - *but* larger indels occur much more frequently than multiple independent single-base indels

- Can allow arbitrary *convex* gap penalties
 - $-gap(s+t) \ge gap(s) + gap(t)$, where s and t are (integer) gap sizes
 - by extending edit graph:
 - add edges corresponding to *arbitrary length* gaps from each vertex to each horizontally or vertically downstream vertex
 - (convexity condition prevents favoring two adjacent short gaps over a single long gap).
 - Time complexity now O(MN(M+N))
 - often unacceptable for moderate *M*, *N*.
 - Also: how to choose appropriate weights? (need data to estimate!)

Affine Gap Penalties

- *Affine* gap penalties:
 - less general than arbitrary convex penalties, but
 - more general than linear penalties.
- Two parameters:
 - -gap opening penalty g_o
 - -gap extension penalty g_e
- gap(n) (penalty for size n gap) is then

$$g_o + n g_e = g_i + (n-1) g_e$$

where the gap *initiating* penalty $g_i = g_o + g_e$

- Example: for BLOSUM62, good penalties are $-g_i = -12$,
 - $-g_e = -2$

These perform *much* better than linear penalty

- (e.g. g = -6)

- N.B. Durbin *et al.* reverse g_i and g_o - g_i is called the 'gap opening' penalty
- Can obtain affine penalties using extension of edit graph, retaining complexity *O*(*MN*):

Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each original vertex. Each cell looks like this:

each left vertex has out-degree and in-degree = 2

each right vertex has out-degree and in-degree = 3

• gap-opening edges from left vertex to right vertex of each pair : weight g_o

• gap extension edges going horizontally or vertically between right vertices : weight g_e

• diagonal edges originate from either left or right vertex, but always go to a left vertex.

- Paths in the augmented graph still correspond to alignments
 - can \exists more than one path for same alignment
 - but highest scoring paths still give best alignments
- Score assigned to size *n* gap is g_o + n g_e
 i.e. affine penalty
- 'Smith-Waterman-Gotoh algorithm'

Finding values for gap penalties

- Direct definition as LLR seems problematic
 what are 'random alignments'?
- *Empirical approach*: Given a score matrix (e.g. BLOSUM62), for various (g_o, g_e) choices
 - Align real sequences to known homologues & simulated sequences
 - Measure score discrimination (E-values of homologue alignments)
 - Find (g_o, g_e) giving best discrimination

Profiles (position-specific scoring)

- Different parts of sequence may evolve at different rates
- In proteins
 - conserved functional motifs
 - structural constraints:
 - internal core region of tightly packed residues, or active sites of enzyme, are more highly conserved;
 - surface residues, particularly in loops, often less conserved.

Conserved Domain in RecR and Class I Topisomerases

RLAEEKITEVILATNPTVEGEATANYIAELC RecR RLODDOVTEVILATNPNIEGEATAMYISRLL RecM **RVDDVGITEVIIATDPNTEGEATATYLVRMV** RecR TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL KQLAEKADHIYLATDLDREGEAIAWRLREVI TOP1 AELLKQANTIIVATDSDREGENIAWSIIHKA ORF1 KDALKDADELILATDEDREGKVISWHLLQLL TOP1 TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA KRFLHEASEIVHAGDPDREGQLLVDEVLDYL TOP3 RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxXU&uatDxxxEGexxxxXUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (I,L,V,M,F,Y,W)

Rates of amino acid exchange in mammalian proteins by burial status

Copyright restrictions may apply.

The Edit Graph for a Pair of Sequences

• *Profiles: Position-specific* scoring scheme specifying score of each possible substitution at each position of a sequence

c											
Cons		a A	С	D	Ε	\mathbf{T}^{*}	V	W	Ŷ	Open	Ext
	G	7	-14	- 1	-5	6	4	-34	-22	28	28
ŗ	P	5	-26	4	1	1	- 4	-48	-31	28	28
	\mathbf{L}	-18	-31	-40	-35	-16	13	-31	-9	100	100
1	T	7	-21	-4	-6	10	- 3	-38	-28	100	100
	E	6	-37	11	12	2	-10	-61	-38	100	100
Ŧ	A	5	-34	3	4	1	-8	-48	-34	100	100
	Ε	Q	- 53	26	31	-5	-29	-60	-42	100	100
	R	-11	-45	-11	-13	-3	-21	-2	-33	100	100
	Т	4	-28	-2	-1	8	7	-51	-24	100	100
	М	-7	-47	-6	-6	-3	-6	-35	-26	100	100
	v	0	~20	-22	-36	2	41	-56	-27	100	100
	К	-9	-44	-1.1	-11	0	-5	-29	-31	100	100
	N	5	-27	7	6	8	-11	-40	-32	100	100
	A,	7	-27	- 4	-6	4	5	-46	-31	100	100
	W	-47	-69	-58	-60	-40	-49	139	- 6	100	100
	G	11	-31	5	1	3	-5	-65	-43	100	100
	ĸ	- 2	-46	5	8	-1	-23	-49	-45	100	100
	V	-4	-23	-27	-45	-2	34	-48	-1.8	100	100
	L	- 3	- 9	-6	-5	-3	3	- 3	-1	26	26
	Ν	-4	-26	3	2	-4	-19	-31	- 9	26	26
	A	4	-16	0	1	2	-12	-40	-10	26	26
	н	0	-30	14	10	3	-15	-41	-21	100	100
	1	-2	-20	-18	-23	-1	17	-50	-11	100	100
••••											

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method *Protein Sci.* 3: 139-146 (1994)

- The *scores* are *position-specific* LLRs:
- Instead of

 $M(r, s) = \log_{a}(h_{r,s} / b_{r,s}) \text{ where}$ $h_{r,s} = \text{freq of } \frac{r}{s} \text{ in homologous seq alignments}$ $b_{r,s} = \text{freq of } \frac{r}{s} \text{ in 'background' (random) alignments}$

• take, for *i*-th row (with residue r_i)

$$-M_{i}(s) = \log_{a}(h_{i,s} / b_{i,s})$$
 where

$$h_{i,s} = \text{freq of } s \text{ aligned to } r_{i} \text{ in homologue alignments}$$

$$b_{i,s} = \text{freq of } s \text{ in random alignments}$$

- PSIBLAST approach:
 - 1. initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
 - 2. build profile using matches
 - 3. rescan database using profile
 - 4. iterate 2 & 3 until ...

Karlin / Altschul for sequence alignments

• For LLR-based alignment scoring

- *i.e.* $s(r) = \log_a(t_r / b_r)$, where *r* is an alignment column,

the expected # local alignments of score $\geq S$ for (random) seqs of length M, N is

 \approx MNK a^{-S}

for some constant *K* (not depending on *S*)

- Note that $a^{-S} = a^{-LLR} = 1 / LR$
- K-A developed theory for *ungapped* alignments, but empirical studies suggest it applies more broadly
 - Estimate K from alignments to random sequence

Word Nucleation Algorithms

- Idea: find short (perfect or imperfect) word matches to 'nucleate' graph search
 - Each such match defines short *diagonal* path
 - Only search part of graph 'surrounding' this path
- BLAST: allow *imperfect* short (e.g. length 3) matches.
 - "Neighbors": set of 3-residue sequences having ≥ min score T against some 3-residue sequence of query
 - Scan database seqs until hit word in neighbor list
 - then do ungapped extension (along diagonal defined by word match)
 - 'significant' matches are those with scores \geq a threshold S
 - Ungapped matches are effective for detecting related proteins:
 - true protein alignments usually include substantial gap-free regions.

BLAST: Word Nucleating Alignment

 If find ≥ 2 significant ungapped matches in same seq, expand search to connecting region of matrix, allowing gaps:

Other Word Nucleation Programs

- FASTA:
 - look for clusters of short exact matches, on nearby diagonals;
 - when found, extend to gapped alignment
- cross_match:
 - do full search of *bands* around exact matches
- These all still time complexity O(MN)

 because # word matches proportional to MN
 but with much smaller constant.

- In database searches, most seqs unrelated to query
- suggests following strategy:
 - Initial rapid pass through database using fast algorithm
 - e.g. just looking for gap-free matches
 - to get (approximate) score,
 - identify sequences having scores above a threshold
 - use full Smith-Waterman on latter
 - for appropriate (low) threshold can get sensitivity nearly as good as full Smith-Waterman search.