
Lecture 9

• Improved scoring

– Affine gap penalties

– Profiles

• Statistical significance

• Reducing time

– Word nucleation algorithms

1

2

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters

considered unaligned):

3

BLOSUM62 Score Matrix
GAP -12 -2

 A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 1

4

Better Alignment Scoring

• Optimal alignment scoring depends on probabilistic

modelling (e.g. LLR scores)

• Limitations of our current approach:

1. each alignment column (edge in WDAG) is scored independently

→ an independence assumption for probability model

2. Score depends only on the residues that are present (via a

BLOSUM-type score matrix) – i.e. independently of position

within sequence

• Ways to allow partial non-independence while preserving

dynamic programming framework:

1. Enhance graph

• Allows ‘memory’ of preceding columns

2. Allow scores to depend on position within the sequence

• so some substitutions (of same residues) or gaps penalized more heavily

than others

• like a site model!

5

6

Gap Penalties

• Usual scoring scheme assigns same penalty g to

each gap edge, so

– weights on extended gaps of size s are linear in s, i.e.

– total gap penalty gap(s) = s  g.

– e.g. in above example, if each g = -6, total penalty on gap

would be

gap(5) = 5  -6 = -30

TNAVAHVD-----DMPNAL
YEAAIQLQVTGVVVTDATL

7

• Would like more flexible gap penalties:

• In proteins, insertions & deletions are rare;

– but when occur, often consist of several residues, because

• they are in regions (loops) tolerant of length changes

– at DNA level, indels in protein coding sequence usually a

multiple of 3 nucleotides

• otherwise, would change reading frame

• In noncoding DNA sequence,

– the most common indel size is 1

– but larger indels occur much more frequently than

multiple independent single-base indels

8

• Can allow arbitrary convex gap penalties

– gap(s+t)  gap(s) + gap(t), where s and t are (integer) gap sizes

by extending edit graph:

– add edges corresponding to arbitrary length gaps from each vertex

to each horizontally or vertically downstream vertex

– (convexity condition prevents favoring two adjacent short gaps

over a single long gap).

Time complexity now O(MN(M+N))

– often unacceptable for moderate M, N.

– Also: how to choose appropriate weights? (need data to estimate!)

9

Affine Gap Penalties

• Affine gap penalties:

– less general than arbitrary convex penalties, but

– more general than linear penalties.

• Two parameters:

– gap opening penalty go

– gap extension penalty ge

• gap(n) (penalty for size n gap) is then

go + n ge = gi + (n – 1) ge

where the gap initiating penalty gi = go + ge

10

• Example: for BLOSUM62, good penalties are

– gi = -12,

– ge = -2

These perform much better than linear penalty

– (e.g. g = -6)

• N.B. Durbin et al. reverse gi and go

– gi is called the ‘gap opening’ penalty

• Can obtain affine penalties using extension of

edit graph, retaining complexity O(MN):

11

Edit Graph for Affine Gap Penalties
Double # vertices, creating left-right pair in place of each

original vertex. Each cell looks like this:

• gap-opening edges from left vertex to right vertex of each pair :

weight go

• gap extension edges going horizontally or vertically between right

vertices : weight ge

• diagonal edges originate from either left or right vertex, but always

go to a left vertex.

ge

ge

ge

gego

go

go

go

each left vertex has out-degree

and in-degree = 2

each right vertex has out-degree

and in-degree = 3

12

• Paths in the augmented graph still
correspond to alignments

– can  more than one path for same alignment

– but highest scoring paths still give best
alignments

• Score assigned to size n gap is go + n ge

– i.e. affine penalty

• ‘Smith-Waterman-Gotoh algorithm’

Finding values for gap penalties

• Direct definition as LLR seems problematic

– what are ‘random alignments’?

• Empirical approach: Given a score matrix (e.g.

BLOSUM62), for various (go , ge) choices

– Align real sequences to known homologues &

simulated sequences

– Measure score discrimination (E-values of

homologue alignments)

– Find (go , ge) giving best discrimination

13

14

• Different parts of sequence may evolve at different

rates

• In proteins

– conserved functional motifs

– structural constraints:

• internal core region of tightly packed residues, or active sites of

enzyme, are more highly conserved;

• surface residues, particularly in loops, often less conserved.

Profiles (position-specific scoring)

15

Conserved Domain in RecR and

Class I Topisomerases
RecR RLAEEKITEVILATNPTVEGEATANYIAELC
RecM RLQDDQVTEVILATNPNIEGEATAMYISRLL
RecR RVDDVGITEVIIATDPNTEGEATATYLVRMV
TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL
TOP1 KQLAEKADHIYLATDLDREGEAIAWRLREVI
ORF1 AELLKQANTIIVATDSDREGENIAWSIIHKA
TOP1 KDALKDADELILATDEDREGKVISWHLLQLL
TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL
TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA
TOP3 KRFLHEASEIVHAGDPDREGQLLVDEVLDYL

RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxxxU&uatDxxxEGexxxxxUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

&: bulky hydrophobic (I,L,V,M,F,Y,W)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

16
Copyright restrictions may apply.

Saunders & Green Mol Biol Evol 2007 24:2632-2647; doi:10.1093/molbev/msm190

Rates of amino acid exchange in mammalian proteins

by burial status

H: hydrophobic

P: polar

17

The Edit Graph for a Pair of Sequences

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

18

• Profiles: Position-specific scoring scheme specifying score of each

possible substitution at each position of a sequence

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method

Protein Sci. 3: 139-146 (1994)

• The scores are position-specific LLRs:

• Instead of

M(r, s) = loga(hr,s / br,s) where

hr,s = freq of
𝑟
𝑠

in homologous seq alignments

br,s = freq of
𝑟
𝑠

in ‘background’ (random) alignments

• take, for i-th row (with residue ri)

– Mi(s) = loga(hi,s / bi,s) where

hi,s = freq of s aligned to ri in homologue alignments

bi,s = freq of s in random alignments

19

20

• PSIBLAST approach:

1. initially compare query sequence to database
sequences (using BLOSUM-type scoring matrix),

2. build profile using matches

3. rescan database using profile

4. iterate 2 & 3 until …

21

Karlin / Altschul

for sequence alignments
• For LLR-based alignment scoring

– i.e. s(r) = loga(tr / br), where r is an alignment column,

the expected # local alignments of score ≥ S for
(random) seqs of length M , N is

≈ MNK a-S

for some constant K (not depending on S)

• Note that a-S = a-LLR = 1 / LR

• K-A developed theory for ungapped alignments,
but empirical studies suggest it applies more
broadly

– Estimate K from alignments to random sequence

22

Word Nucleation Algorithms

• Idea: find short (perfect or imperfect) word matches to
‘nucleate’ graph search

– Each such match defines short diagonal path

– Only search part of graph ‘surrounding’ this path

• BLAST: allow imperfect short (e.g. length 3) matches.

– “Neighbors”: set of 3-residue sequences having  min score T
against some 3-residue sequence of query

– Scan database seqs until hit word in neighbor list

– then do ungapped extension (along diagonal defined by word
match)

• ‘significant’ matches are those with scores  a threshold S

• Ungapped matches are effective for detecting related proteins:

– true protein alignments usually include substantial gap-free regions.

23

BLAST: Word Nucleating Alignment

A S G D R L L I C V MA T F D E I A A H N Y V I A
G
G
L
I
A
S
F
V
D
A
R
L
N
W

24

– If find  2 significant ungapped matches in same seq,

expand search to connecting region of matrix, allowing

gaps:

25

26

Other Word Nucleation Programs

• FASTA:

– look for clusters of short exact matches, on
nearby diagonals;

– when found, extend to gapped alignment

• cross_match:

– do full search of bands around exact matches

• These all still time complexity O(MN)

– because # word matches proportional to MN

but with much smaller constant.

27

• In database searches, most seqs unrelated to query

• suggests following strategy:

– Initial rapid pass through database using fast algorithm

• e.g. just looking for gap-free matches

to get (approximate) score,

– identify sequences having scores above a threshold

– use full Smith-Waterman on latter

– for appropriate (low) threshold can get sensitivity nearly

as good as full Smith-Waterman search.

