
Lecture 12

• More on WDAGs:

– Inverted WDAGs, fwd/backwd algorithm

– Finding multiple high-scoring paths

• Multiple paths in edit graphs

– Internal repeats

• Multiple paths in WLLs

• “D-segments”

1

2

Inverted WDAGs

• Can “invert” any WDAG: create graph with

– same vertices & edge weights

– direction of each edge reversed

– is still acyclic!

• inverted WDAG has same paths (& path

weights), but in reverse direction

– “forward” path in inverted WDAG = “backward”

path in original WDAG (& vice versa)

3

Forward/backward algorithm

• Order vertices (v1, v2, ..., vn) with parents preceding
children.
– Reverse order (vn, vn-1, ..., v1) has parents before children in

inverted graph

• (Forward direction) Find w(v)
= highest weight of all paths ending at v in original (non-inverted)
graph

• (Backward direction) Using inverted graph, find w’(v)
= highest weight of all paths ending at v in inverted graph

= highest weight of all paths beginning at v in original graph

• joining path ending at v, to path beginning at v (in
original graph),

see that w(v) + w’(v) = highest weight of any path going
through v.

Finding multiple high-scoring paths

• If high-weight paths are important, we’ll want more

than one!

– But not slight perturbations of highest-weight path

• ‘Brute force’ algorithm:

– Find highest-weight path

– ‘Mask it’ (remove its edges from graph)

– Repeat above two steps until scores ‘uninteresting’

< some threshold value S

– can be O(N2), but often acceptable

4

Improving on ‘brute force’

by graph reduction

• Use forwd/backwd to find w(v), w’(v)

• Eliminate v (& all its edges) if w(v) + w’(v) < S

• Eliminate all edges into v if w(v) ≤ 0

• Eliminate all edges out of v if w’(v) ≤ 0

• Remaining graph is often much smaller & splits

into ‘connected components’ which can be

processed separately

– v, v’ in same c.c. if a chain of edges connected them

• But no guarantee that < O(N2)
5

6

• Is there an O(N) algorithm?

– Yes, for WLLs (Ruzzo & Tompa)

7

• Search edit graph of sequence against itself

– i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

– if include main diagonal, best path will be identity match to self

– complexity = O(N2) where N = sequence length.

Graph for finding imperfect

internal repeats:

Finding (imperfect) internal repeats

8

• Find short tandem repeats (e.g. microsatellites,
minisatellites):

– scan a band just above main diagonal.

– Complexity = O(kN) where k is width of the band.

– Manageable even for large N, if k small.

Graph for finding short

tandem repeats:

ACACACACACACACAC
ACACACACACACACAC

Finding multiple high-scoring

segments in WLLs

9

10

50 100-75

score = 75, but does not satisfy P1

maximal-scoring segments

contained in

higher-scoring

segment

• A (locally-)maximal(-scoring) segment I is one such

that

– P1: no subsegment of I has a higher score than I

– P2: no segment properly containing I satisfies P1

• Example:

11

• Highest weight path via dynamic programming (no explicit

graph):

in (pseudo-)pseudocode:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i];

if (cumul  0)

{cumul = 0; start = i + 1;} /* NOTE RESET TO ZERO */

else if (cumul  max)

{max = cumul; best_end = i; best_start = start;}

}

if (max  S) print best_start, best_end, max

• Correspondence to (implicit) WLL

– i labels edges

– cumul = w(v) (where v is vertex at end of edge i)

– max = best w(v) so far

– best_end = i corresponding to edge ending at best w(v) so far

– start = edge following B(v)

12

Maximal segments – from cumulative score plot

(without 0 resets)

maximal segment

start (local minimum)

end (local maximum)

13

• Can find all maximal segs of score  S using

following practical (but non-optimal) algorithm:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i];

if (cumul  max)

{max = cumul; end = i;}

if (cumul  0 or i == N) {

if (max  S)

{print start, end, max; i = end; } /* N.B. MUST BACKTRACK! */

max = cumul = 0; start = end = i + 1;

}

}

14

1st maximal segment 2d maximal segment

‘backtracked’ region –

scanned twice

15

• In worst case this is O(N2) (because of

backtracking),

– but in practice usually O(N) because a given

base is usually traversed only a few times

• Ruzzo-Tompa algorithm guarantees O(N)

– Basic idea:

• keep list of potential high-scoring segments

– modify as new local maxima/minima encountered

• report them when confirmed (at end of a region)

16

• An undesirable aspect of maximal segments as

defined:

– single maximal seg may contain two (or more) high-

scoring regions, separated by significant negative-

scoring regions

– i.e. two possibly biologically distinct target occurrences

get merged into one maximal segment

17

50 100-45

now entire segment has score = 105, & satisfies P1 and P2

• Example:

18

A better problem!

• to avoid this, have max allowed ‘dropoff’ D

< 0

• D-segment is segment without any

subsegments of score < D

• maximal D-segment is D-segment I such

that
• P1: no subsegment of I has higher score than I

• P2: no D-segment properly containing I satisfies P1

• Problem: given S ( –D), find all maximal

D-segs of score  S

– (algorithm fails if S < –D)

19

Maximal D-segments

1st maximal D-segment 2d maximal D-segment

maximal segment

D:

20

• O(N) algorithm to find all maximal D-segs:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i];

if (cumul  max)

{max = cumul; end = i;}

if (cumul  0 or cumul  max + D or i == N) {

if (max  S)

{print start, end, max; }

max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING

NEEDED! */

}

}

21

• So more biologically relevant problem is also

computationally simpler!

• what are appropriate S and D?

– mainly an empirical question (based on known

examples); altho

• interpretation via 2-state HMM can be useful

• Karlin-Altschul theory tells when they are ‘statistically

significant’

D-Segments

• Powerful tool for analyzing ‘linear’ data

– Single sequences (incl. motifs, numerical data)

– Fixed alignment

• Strengths:

– Very simple to program

– Very fast, even for mammalian genomes

• Main limitation:

– Only allows two types of segments (‘target’ and

‘background’)

• Essentially a generalization of 2-state HMMs

• multi-state HMMs are more flexible
22

23

CNVs & Read Depth

• CNV = ‘copy number variant’– e.g. region that is single

copy in reference sequence but duplicated in sample

• One way to detect: map reads from sample onto

reference, look for regions of atypical coverage depth

‘Single-copy’ in sample

and reference
multi-copy in sample

24

HW 6: finding CNVs

using D-segments

• data: next-gen read alignments to genome

• observed symbols: counts of # read starts at

each position (0, 1, 2,  3)

– frequencies from Poisson dist’n with

appropriate mean

• target regions: heterozygous duplications

– One chrom = reference allele, other is dup

– Poisson mean = 1.5 X background mean

