
Lecture 12

• More on WDAGs:

– Inverted WDAGs, fwd/backwd algorithm

– Finding multiple high-scoring paths

• Multiple paths in edit graphs

– Internal repeats

• Multiple paths in WLLs

• “D-segments”
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Inverted WDAGs

• Can “invert” any WDAG: create graph with 

– same vertices & edge weights

– direction of each edge reversed 

– is still acyclic!

• inverted WDAG has same paths (& path 

weights), but in reverse direction

– “forward” path in inverted WDAG = “backward” 

path in original WDAG (& vice versa)
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Forward/backward algorithm

• Order vertices (v1, v2, ..., vn) with parents preceding 
children. 
– Reverse order (vn, vn-1, ..., v1) has parents before children in 

inverted graph

• (Forward direction) Find w(v) 
= highest weight of all paths ending at v in original (non-inverted) 
graph

• (Backward direction) Using inverted graph, find w’(v) 
= highest weight of all paths ending at v in inverted graph

= highest weight of all paths beginning at v in original graph

• joining path ending at v, to path beginning at v (in 
original graph),

see that w(v) + w’(v) = highest weight of any path going 
through v. 



Finding multiple high-scoring paths

• If high-weight paths are important, we’ll want more 

than one!

– But not slight perturbations of highest-weight path

• ‘Brute force’ algorithm:

– Find highest-weight path

– ‘Mask it’ (remove its edges from graph)

– Repeat above two steps until scores ‘uninteresting’

< some threshold value S

– can be O(N2), but often acceptable
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Improving on ‘brute force’

by graph reduction

• Use forwd/backwd to find w(v),  w’(v)  

• Eliminate v (& all its edges) if w(v) + w’(v) < S

• Eliminate all edges into v if w(v) ≤ 0

• Eliminate all edges out of v if w’(v) ≤ 0

• Remaining graph is often much smaller & splits

into ‘connected components’ which can be 

processed separately

– v, v’ in same c.c. if a chain of edges connected them

• But no guarantee that < O(N2)
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• Is there an O(N) algorithm? 

– Yes, for WLLs (Ruzzo & Tompa) 
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• Search edit graph of sequence against itself 

– i.e. the same sequence labels columns and rows 

above (& not including) the main diagonal: 

– if include main diagonal, best path will be identity match to self

– complexity = O(N2) where N = sequence length. 

Graph for finding imperfect 

internal repeats:

Finding (imperfect) internal repeats
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• Find short tandem repeats (e.g. microsatellites, 
minisatellites): 

– scan a band just above main diagonal. 

– Complexity = O(kN) where k is width of the band.

– Manageable even for large N, if k small. 

Graph for finding short 

tandem repeats:

ACACACACACACACAC
ACACACACACACACAC



Finding multiple high-scoring 

segments in WLLs
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50 100-75

score = 75, but does not satisfy P1

maximal-scoring segments

contained in 

higher-scoring 

segment

• A (locally-)maximal(-scoring) segment I is one such 

that 

– P1: no subsegment of I has a higher score than I

– P2: no segment properly containing I satisfies P1

• Example:
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• Highest weight path via dynamic programming (no explicit 

graph):

in (pseudo-)pseudocode:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++)  {

cumul += s[i];

if (cumul  0)

{cumul = 0;  start = i + 1;}    /* NOTE RESET TO ZERO */

else if (cumul  max) 

{max = cumul;  best_end = i;  best_start = start;}

}

if (max  S) print best_start, best_end, max

• Correspondence to (implicit) WLL

– i labels edges

– cumul = w(v) (where v is vertex at end of edge i)

– max = best w(v) so far

– best_end = i corresponding to edge ending at best w(v) so far

– start = edge following B(v)
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Maximal segments – from cumulative score plot 

(without 0 resets)

maximal segment

start (local minimum)

end (local maximum)
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• Can find all maximal segs of score  S using 

following practical (but non-optimal) algorithm:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or i == N) {

if (max  S) 

{print start, end, max;   i = end; }  /* N.B. MUST BACKTRACK! */

max = cumul = 0;  start = end = i + 1;

}

}
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1st maximal segment 2d maximal segment

‘backtracked’ region –

scanned twice



15

• In worst case this is O(N2) (because of 

backtracking), 

– but in practice usually O(N) because a given 

base is usually traversed only a few times

• Ruzzo-Tompa algorithm guarantees O(N)

– Basic idea:

• keep list of potential high-scoring segments

– modify as new local maxima/minima encountered

• report them when confirmed (at end of a region)
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• An undesirable aspect of maximal segments as  

defined: 

– single maximal seg may contain two (or more) high-

scoring regions, separated by significant negative-

scoring regions

– i.e. two possibly biologically distinct target occurrences 

get merged into one maximal segment  
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50 100-45

now entire segment has score = 105, & satisfies P1 and P2

• Example:
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A better problem!

• to avoid this, have max allowed ‘dropoff’ D 

< 0 

• D-segment is segment without any 

subsegments of score < D 

• maximal D-segment is D-segment I such 

that 
• P1: no subsegment of I has higher score than I

• P2: no D-segment properly containing I satisfies P1

• Problem: given S ( –D), find all maximal 

D-segs of score  S

– (algorithm fails if S < –D)
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Maximal D-segments

1st maximal D-segment 2d maximal D-segment

maximal segment

D:
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• O(N) algorithm to find all maximal D-segs:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or cumul  max + D or i == N) {

if (max  S) 

{print start, end, max; }

max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING 

NEEDED! */

}

}
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• So more biologically relevant problem is also 

computationally simpler!

• what are appropriate S and D? 

– mainly an empirical question (based on known 

examples); altho

• interpretation via 2-state HMM can be useful

• Karlin-Altschul theory tells when they are ‘statistically 

significant’



D-Segments

• Powerful tool for analyzing ‘linear’ data

– Single sequences (incl. motifs, numerical data)

– Fixed alignment

• Strengths:

– Very simple to program

– Very fast, even for mammalian genomes

• Main limitation:

– Only allows two types of segments (‘target’ and 

‘background’)

• Essentially a generalization of 2-state HMMs

• multi-state HMMs are more flexible
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CNVs & Read Depth

• CNV = ‘copy number variant’– e.g. region that is single 

copy in reference sequence but duplicated in sample

• One way to detect: map reads from sample onto 

reference, look for regions of atypical coverage depth

‘Single-copy’ in sample 

and reference
multi-copy in sample
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HW 6:  finding CNVs 

using D-segments

• data: next-gen read alignments to genome

• observed symbols: counts of # read starts at 

each position (0, 1, 2,  3)

– frequencies from Poisson dist’n with 

appropriate mean

• target regions: heterozygous duplications 

– One chrom = reference allele, other is dup

– Poisson mean = 1.5 X background mean


