_ecture 14

« HMM probability calculations
—WDAG
— Viterbi algorithm

» 2-state HMMSs & D-segments



Hidden Markov Model

observed symbols
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HMM Probabilities of Sequences

Prob of sequence of states w;m,m, ... 7, IS
aOnlanlnzan2n3an3n4 an 1™n
Prob of seq of observed symbols b,b,b, ... b,

conditional on state sequence IS
e, (be, (b,) e (b) ... e, (b,)
Jomt probablllty Aor, H”
(define a_ to be 1)
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(Unconditional) prob of observed sequence
= sum (of joint probs) over all possible state paths

— not practical to compute directly, by ‘brute force’! We will use
dynamic programming.
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Computing HMM Probabilities

« WDAG structure for sequence HMMs:

— for it position in seq (i = 1, ... n), have 2 nodes for each
state:

» total # nodes = 2ns + 2, where n = seq length, s = # states
— Pair of nodes for a given state at it position is connected
by an emission edge
 Weight is the emission prob for it observed residue
 Can omit node pair if emission prob =0
— Have transition edges connecting (right-hand) state
nodes at position | with (left-hand) state nodes at position
I+1
 Weights are transition probs
« Can omit edges with transition prob =0



WDAG for 3-state HMM,
length n sequence

weights are emission
probabilities e,(b;) for it
residue b;

weights are transition
probabilities a,,

o ; D1
position i-1 position | position i1+1



Beginning of Graph

b, b, o
begin state  position 1 position 2 position 3

End of graph is similar — but with edges going to the end state




Paths through graph from begin node to end node
correspond to sequences of states

Product weight along path

= Joint probability of state sequence & observed symbol
sequence

Highest-weight path = highest probability state sequence
Sum of (product) path weights, over all paths,
= probability of observed sequence

Sum of (product) path weights over
— all paths going through a particular node, or
— all paths that include a particular edge,

divided by prob of observed sequence,
= posterior probability of that edge or node




Path Weights

e1(bi.y)

€3(Djs1)

position i-1 position i position 1+1



* By general results on WDAGSs, can use dynamic
programming to find highest weight path:

= “Viterbi algorithm” to find highest probability path
(most probable “parse”)

— In this case can use log probabilities & sum weights

— (N.B. paths are constrained to begin at the begin
node, and end at the end node!)



The Viterbi path Is
the most probable parse!



Complexity

» = O(JV|+|E|), i.e. total # nodes and edges.

e #nodes =2ns + 2

— where n = sequence length,
— S = # states.

« # edges = (n—1)s?+ ns + 2s

 So overall complexity is O(ns?)

— (actually s? can be reduced to # ‘allowed’
transitions between states — depends on model

topology).
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begin state

by
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b,
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0
position 3
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2-state HMMs & D-segments
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from lecture 13

A A T G C C T G G A T A

NNN\VZ7z=as

G+C-rich state

A+T-rich state
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from lecture 12

maximal segment

15t maximal D-segment

29 maximal D-segment
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« O(N) algorithm to find all maximal D-segs:
cumul = max = 0; start = 1;
for(1=1;1<N;1++) {

cumul += s[i];

If (cumul > max)
{max = cumul; end =1i;}

If (cumul <0 orcumul<max+Dori==N){
If (max > S)

{print start, end, max; }

max = cumul =0: start=end =1+ 1; /* NO BACKTRACKING
NEEDED! */
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D-segments =~ 2-state HMMS

Consider 2-state HMM

— states 1 & 2, transition probs a,;, a,,, a,;, a,,

— observed symbols {r}, emission probs {e,(r)}, {e,(r)}
Define

scores s(r) = log(e,(r) a,,/(e,(r) a;;))

S =-D =log(a;;az,/(85121,))
Then iIf S > 0, the maximal D-segments In a sequence
(r)i=1 o are the state-2 segments in the Viterbi parse

(can allow for non-.5 initiation probs by starting cumul at
non-zero value)
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D-segments vs HMMS

* D-segments
—are very easy to program!

—give Viterbi parse in just one pass through the
sequence

—somewhat more flexible (S, D settings)

e« HMMSs

—allow more powerful parameter estimation

— can attach probabilities to alternative
decompositions

—easlly generalize to > 2 types of segments— just
allow more states
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