Lecture 2
Algorithms & computation time

Finding exact sequence matches using
suffix arrays

Hashtables



Algorithms — Some General Remarks

« The most widely used algorithms are the oldest
— e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually not finding new
algorithms,
but rather
— finding biologically appropriate applications of old ones.
« Often prefer
— suboptimal but easy-to-program algorithm over more optimal one
— or space-efficient algorithm over time-efficient one.
 Probabilities are important in
— Interpreting results
— guiding search
The most powerful analyses generally involve probabilistic
models, rather than deterministic ones.
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Genomes are big,
but computers are fast!

 Typical laptop clock speed: ~ 1 Ghz
— potentially billions of CPU instructions / sec
e a gigabase (N = 10°) genome can be

analyzed even with 1000s of operations per
base

— 1000 x 10°cycles < 20 min



But not that fast!

« O(N?) analysis of a gigabase genome is impractical
(unless the constant factor is much less than 1):
— 1018 cycles = 10° seconds = 32 yrs



Important practical considerations
with genome-scale data sets

« Compared to CPU operations,

— ‘cache misses’ (non-cache memory accesses) are very
slow (100s of cycles)

— disk accesses are even slower (1000s of cycles)

« But both acquire multiple bytes at once; so
accessing data sequentially (in chunks) Is better
than non-sequentially

— Burrows-Wheeler is slow!

 Using an interpreted language may multiply your
cycles by a factor of 10 or more



Finding perfectly matching
subseguences of a sequence

* ldea (much more efficient than ‘brute force’
approach):
— suffix array (Manber & Myers, 1990)
— make list of positions in sequence

— each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of
sequence

— lexicographically sort list of pointers

— process the list: adjacent entries are “maximally
agreeing”



Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC



* The ‘pointers’ are just positions
(represented by integers) — not (necessarily)
memory addresses

Do not store the substrings!

— and make sure your program doesn’t
(unintentionally) do this!



Suffix array step 2:

View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC



Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12
P1

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC
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Finding Matching Subseguences
Using the Sorted List of Pointers

 Perfectly matching subsequences

— (more precisely — the pointers to the starts of those
subsequences)

are ‘“‘near’ each other in the sorted list

 For a given subsequence, a longest perfect match
to It I1s adjacent to it in the sorted list

— (there may be other, equally long matches which are
not adjacent, but they are nearby).
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Can use to find matches among multiple sequences
by concatenating them (+ reverse complements)

— e.g. sequence assembly of a large # of reads

HW #1 asks you to apply this algorithm to find:

— perfectly matching subsequences in 2 genomic sequences
& their reverse complements.

much faster than an O(N?) algorithm (e.g. Smith-
Waterman, or even BLAST), but

limited to finding exact matches
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Algorithmic Complexity

 Basic questions about an algorithm:
— how long does it take to run?
— how much space (RAM or disk space) does it require?
« Would like precise function f(N), e.g.
f(N) =.05 N3 +50.7 N> + 6.03 N
for
— running time in secs, or
— space in kbytes,
as function of the size N of input data set.
« But

— tedious to derive, &
— depends on hardware & software implementation details.
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» Instead, more customary to give “the” asymptotic
complexity, I1.e. expression g(N) such that

C,9(N) <f(N) <C,g(N)
for some constants C, and C,, and N large enough.

« This is written O(g(N)), where notation O() means
“up to an unspecified multiplicative constant™.

— e.g. for the f(N) above, the dominating term for large N is
.05 N3, so

e can take g(N) = N3
« asymptotic complexity = O(N3).
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 Useful as rough guide to performance, but can be
misleading:
— for small N a different term may dominate
e e.¢. 29 term in above example more important for N < 1000

— size of constant may be quite important
* (big difference between .05 and 5,000,000!)

* e.g. BLAST and Smith-Waterman both O(N?), but size of
constant enormously different

* ‘cache misses’ and disk accesses often dominate running time,
yet are invisible to complexity analysis (because affect constant
factor only)
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» Another limitation: time or space requirement may
depend on specific characteristics of input data.

« Usually give “worst case” complexity
— applies to the worst data set of a given size,

but

— In biological situations the average biologically
occurring case IS
* more relevant

» often much easier than worst case (which may never arise in
practice), or even “average case’” in some idealized sense.
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Exponents & logarithms

log,(a) = b, al°ea®) =p (log inverts exp)
ab*c=aPac log,(df) =log.(d) + log,(f)
(@) =a  log,(df) = f log,(d)

a’=1 log,(1) =0

al=a log.(a) =1

aP=1/a> log,(1/d)=-log.(d)
l0g,(b) = log,(b) / log,(c)
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4 =22

4> =210=1024 = 103

410 = 220 ~ 1()6

415 = 230 ~ 1()9

4" =# DNA ‘words’ of length n
log,(10%) ~ 15
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(Average Case) Complexity Analysis
of Suffix Array algorithm

If N = sequence length, sorting can be done with
— O(NIlog(N)) comparisons,
— each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))?).

— (Processing the sorted list requires an additional O(Nlog(N)) steps — doesn’t
affect the overall complexity).

— N.B. cache misses are a significant factor!
Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

several O(N) algorithms are now known — but the best
Implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

3 other, older O(N) methods (‘suffix trees’), but these are
— much less space efficient,
— harder to program, and

— (probably) slower in practice
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Hashtables

 Like suffix arrays, they store locations of
subsequences in a way that allows quick finding of
matches

 But using subsequences (or words) of a fixed
length w

» ldea: work thru the sequence a base at a time.

— for the word starting at position p :
« Convert the word into a table location

« If that location is already occupied, find a nearby unoccupied
one

« Store p, and (if necessary) enough additional information to

reconstruct the word "



Nucleotides to numbers

et (for example)
A=0,C=1,G=2,T(orU)=3
Then any (short) sequence has corresponding #,
e.g.
AGGC=0x4"3+2Xx4"2+2x4" +1=0+32+8+1=41

allows more efficient sequence storage

— 1 byte per 4 nucs

— Can be important for some tasks (e.g. assembly of large #
reads)

Can be used for table locations for short word lengths

— Not 1deal: many ‘collisions’
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Hashtables vs suffix arrays

 Advantages of hashtables:

— only O(N) to construct table, O(1) to lookup an
entry

 Disadvantages:
— less memory efficient
— requires choice of a fixed word length w
— (slightly) harder to program
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