Lecture 2
Algorithms & computation time

Finding exact sequence matches using
suffix arrays

Hashtables

Algorithms — Some General Remarks

« The most widely used algorithms are the oldest
— e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually not finding new
algorithms,
but rather
— finding biologically appropriate applications of old ones.
« Often prefer
— suboptimal but easy-to-program algorithm over more optimal one
— or space-efficient algorithm over time-efficient one.
 Probabilities are important in
— Interpreting results
— guiding search
The most powerful analyses generally involve probabilistic
models, rather than deterministic ones.

2

Genomes are big,
but computers are fast!

 Typical laptop clock speed: ~ 1 Ghz
— potentially billions of CPU instructions / sec
e a gigabase (N = 10°) genome can be

analyzed even with 1000s of operations per
base

— 1000 x 10°cycles < 20 min

But not that fast!

« O(N?) analysis of a gigabase genome is impractical
(unless the constant factor is much less than 1):
— 1018 cycles = 10° seconds = 32 yrs

Important practical considerations
with genome-scale data sets

« Compared to CPU operations,

— ‘cache misses’ (non-cache memory accesses) are very
slow (100s of cycles)

— disk accesses are even slower (1000s of cycles)

« But both acquire multiple bytes at once; so
accessing data sequentially (in chunks) Is better
than non-sequentially

— Burrows-Wheeler is slow!

 Using an interpreted language may multiply your
cycles by a factor of 10 or more

Finding perfectly matching
subseguences of a sequence

* ldea (much more efficient than ‘brute force’
approach):
— suffix array (Manber & Myers, 1990)
— make list of positions in sequence

— each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of
sequence

— lexicographically sort list of pointers

— process the list: adjacent entries are “maximally
agreeing”

Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

* The ‘pointers’ are just positions
(represented by integers) — not (necessarily)
memory addresses

Do not store the substrings!

— and make sure your program doesn’t
(unintentionally) do this!

Suffix array step 2:

View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12
P1

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC

10

Finding Matching Subseguences
Using the Sorted List of Pointers

 Perfectly matching subsequences

— (more precisely — the pointers to the starts of those
subsequences)

are ‘“‘near’ each other in the sorted list

 For a given subsequence, a longest perfect match
to It I1s adjacent to it in the sorted list

— (there may be other, equally long matches which are
not adjacent, but they are nearby).

11

Can use to find matches among multiple sequences
by concatenating them (+ reverse complements)

— e.g. sequence assembly of a large # of reads

HW #1 asks you to apply this algorithm to find:

— perfectly matching subsequences in 2 genomic sequences
& their reverse complements.

much faster than an O(N?) algorithm (e.g. Smith-
Waterman, or even BLAST), but

limited to finding exact matches

12

Algorithmic Complexity

 Basic questions about an algorithm:
— how long does it take to run?
— how much space (RAM or disk space) does it require?
« Would like precise function f(N), e.g.
f(N) =.05 N3 +50.7 N> + 6.03 N
for
— running time in secs, or
— space in kbytes,
as function of the size N of input data set.
« But

— tedious to derive, &
— depends on hardware & software implementation details.

13

» Instead, more customary to give “the” asymptotic
complexity, I1.e. expression g(N) such that

C,9(N) <f(N) <C,g(N)
for some constants C, and C,, and N large enough.

« This is written O(g(N)), where notation O() means
“up to an unspecified multiplicative constant™.

— e.g. for the f(N) above, the dominating term for large N is
.05 N3, so

e can take g(N) = N3
« asymptotic complexity = O(N3).

14

 Useful as rough guide to performance, but can be
misleading:
— for small N a different term may dominate
e e.¢. 29 term in above example more important for N < 1000

— size of constant may be quite important
* (big difference between .05 and 5,000,000!)

* e.g. BLAST and Smith-Waterman both O(N?), but size of
constant enormously different

* ‘cache misses’ and disk accesses often dominate running time,
yet are invisible to complexity analysis (because affect constant
factor only)

15

» Another limitation: time or space requirement may
depend on specific characteristics of input data.

« Usually give “worst case” complexity
— applies to the worst data set of a given size,

but

— In biological situations the average biologically
occurring case IS
* more relevant

» often much easier than worst case (which may never arise in
practice), or even “average case’” in some idealized sense.

16

Exponents & logarithms

log,(a) = b, al°ea®) =p (log inverts exp)
ab*c=aPac log,(df) =log.(d) + log,(f)
(@) =a log,(df) = f log,(d)

a’=1 log,(1) =0

al=a log.(a) =1

aP=1/a> log,(1/d)=-log.(d)
l0g,(b) = log,(b) / log,(c)

17

4 =22

4> =210=1024 = 103

410 = 220 ~ 1()6

415 = 230 ~ 1()9

4" =# DNA ‘words’ of length n
log,(10%) ~ 15

18

(Average Case) Complexity Analysis
of Suffix Array algorithm

If N = sequence length, sorting can be done with
— O(NIlog(N)) comparisons,
— each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))?).

— (Processing the sorted list requires an additional O(Nlog(N)) steps — doesn’t
affect the overall complexity).

— N.B. cache misses are a significant factor!
Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

several O(N) algorithms are now known — but the best
Implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

3 other, older O(N) methods (‘suffix trees’), but these are
— much less space efficient,
— harder to program, and

— (probably) slower in practice
19

Hashtables

 Like suffix arrays, they store locations of
subsequences in a way that allows quick finding of
matches

 But using subsequences (or words) of a fixed
length w

» ldea: work thru the sequence a base at a time.

— for the word starting at position p :
« Convert the word into a table location

« If that location is already occupied, find a nearby unoccupied
one

« Store p, and (if necessary) enough additional information to

reconstruct the word "

Nucleotides to numbers

et (for example)
A=0,C=1,G=2,T(orU)=3
Then any (short) sequence has corresponding #,
e.g.
AGGC=0x4"3+2Xx4"2+2x4" +1=0+32+8+1=41

allows more efficient sequence storage

— 1 byte per 4 nucs

— Can be important for some tasks (e.g. assembly of large #
reads)

Can be used for table locations for short word lengths

— Not 1deal: many ‘collisions’

21

Hashtables vs suffix arrays

 Advantages of hashtables:

— only O(N) to construct table, O(1) to lookup an
entry

 Disadvantages:
— less memory efficient
— requires choice of a fixed word length w
— (slightly) harder to program

22

