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• Algorithms & computation time 

• Finding exact sequence matches using 

suffix arrays

• Hashtables

Lecture 2
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Algorithms – Some General Remarks
• The most widely used algorithms are the oldest

– e.g. sorting lists, traversing trees, dynamic programming. 

The challenge in CMB is usually not finding new
algorithms, 

but rather 

– finding biologically appropriate applications of old ones.

• Often prefer 

– suboptimal but easy-to-program algorithm over more optimal one 

– or space-efficient algorithm over time-efficient one.

• Probabilities are important in 

– interpreting results

– guiding search

The most powerful analyses generally involve probabilistic 
models, rather than deterministic ones.



Genomes are big, 

but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz

– potentially billions of CPU instructions / sec

• a gigabase (N = 109) genome can be 

analyzed even with 1000s of operations per 

base

– 1000 × 109 cycles < 20 min
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But not that fast!

• O(N2) analysis of a gigabase genome is impractical 

(unless the constant factor is much less than 1):

– 1018 cycles ≈ 109 seconds ≈ 32 yrs
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• Compared to CPU operations,

– ‘cache misses’ (non-cache memory accesses) are very 
slow (100s of cycles)

– disk accesses are even slower (1000s of cycles)

• But both acquire multiple bytes at once; so 
accessing data sequentially (in chunks) is better 
than non-sequentially

– Burrows-Wheeler is slow!

• Using an interpreted language may multiply your 
cycles by a factor of 10 or more  

5

Important practical considerations 

with genome-scale data sets
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Finding perfectly matching 

subsequences of a sequence

• Idea (much more efficient than ‘brute force’ 

approach): 

– suffix array (Manber & Myers, 1990)

– make list of positions in sequence

– each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of 

sequence

– lexicographically sort list of pointers

– process the list: adjacent entries are “maximally 

agreeing”



Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

7



• The ‘pointers’ are just positions 

(represented by integers) – not (necessarily) 

memory addresses

• Do not store the substrings!

– and make sure your program doesn’t 

(unintentionally) do this!
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Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
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Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27
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Finding Matching Subsequences 

Using the Sorted List of Pointers

• Perfectly matching subsequences 

– (more precisely – the pointers to the starts of those 

subsequences) 

are “near” each other in the sorted list

• For a given subsequence, a longest perfect match 

to it is adjacent to it in the sorted list 

– (there may be other, equally long matches which are 

not adjacent, but they are nearby).
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• Can use to find matches among multiple sequences 

by concatenating them (+ reverse complements)

– e.g. sequence assembly of a large # of reads

• HW #1 asks you to apply this algorithm to find: 

– perfectly matching subsequences in 2 genomic sequences 

& their reverse complements. 

• much faster than an O(N2) algorithm (e.g. Smith-

Waterman, or even BLAST), but

• limited to finding exact matches
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Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.  

f(N) = .05 N3 + 50.7 N2 + 6.03 N 

for 

– running time in secs, or 

– space in kbytes, 

as function of the size N of input data set.  

• But 

– tedious to derive, & 

– depends on hardware & software implementation details.
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• Instead, more customary to give “the” asymptotic 

complexity, i.e. expression g(N) such that 

C1g(N)  < f(N) < C2g(N) 

for some constants C1 and C2 , and N large enough.  

• This is written O(g(N)), where notation O() means 

“up to an unspecified multiplicative constant”. 

– e.g. for the f(N) above, the dominating term for large N is 

.05 N3, so 

• can take g(N) = N3

• asymptotic complexity = O(N3). 



15

• Useful as rough guide to performance, but can be 

misleading: 

– for small N a different term may dominate 

• e.g. 2d term in above example more important for N < 1000

– size of constant may be quite important 

• (big difference between .05 and 5,000,000!) 

• e.g. BLAST and Smith-Waterman both O(N2), but size of 

constant enormously different

• ‘cache misses’ and disk accesses often dominate running time, 

yet are invisible to complexity analysis (because affect constant 

factor only)
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• Another limitation: time or space requirement may 
depend on specific characteristics of input data. 

• Usually give “worst case” complexity 

– applies to the worst data set of a given size, 

but

– in biological situations the average biologically 
occurring case is 

• more relevant

• often much easier than worst case (which may never arise in 
practice), or even “average case” in some idealized sense.



Exponents & logarithms

• loga(a
b) = b,   aloga(b) = b  (log inverts exp)

• ab+c = ab ac loga(df) = loga(d) + loga(f)

• (ab)c  = abc loga(d
f) = f loga(d)

• a0 = 1              loga(1) = 0

• a1 = a              loga(a) = 1

• a-b = 1 / ab          loga(1 / d) = -loga(d) 

• logc(b) = loga(b) / loga(c)   
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• 4 = 22

• 45 = 210 = 1024 ≈ 103

• 410 = 220 ≈ 106

• 415 = 230 ≈ 109

• 4n = # DNA ‘words’ of length n

• log4(109) ≈ 15

18
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(Average Case) Complexity Analysis

of Suffix Array algorithm
• If N = sequence length, sorting can be done with 

– O(Nlog(N)) comparisons, 

– each requiring O(log(N)) steps on average, 

for an overall complexity of O(N(log(N))2). 

– (Processing the sorted list requires an additional O(Nlog(N)) steps – doesn’t 
affect the overall complexity). 

– N.B. cache misses are a significant factor!

• Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

• several O(N) algorithms are now known – but the best 
implementations are not as fast as O(Nlog(N)) algorithms, even for 
very large genomes!!

•  other, older O(N) methods (‘suffix trees’), but these are
– much less space efficient, 

– harder to program, and 

– (probably) slower in practice



Hashtables

• Like suffix arrays, they store locations of 

subsequences in a way that allows quick finding of 

matches

• But using subsequences (or words) of a fixed 

length w

• Idea: work thru the sequence a base at a time. 

– for the word starting at position p :

• Convert the word into a table location

• If that location is already occupied, find a nearby unoccupied 

one

• Store p, and (if necessary) enough additional information to 

reconstruct the word
20



Nucleotides to numbers

• Let (for example)

A = 0, C = 1, G = 2, T (or U) = 3

• Then any (short) sequence has corresponding #, 

e.g:
AGGC = 0 x 4^3 + 2 x 4^2 + 2 x 4^1 + 1 = 0 + 32 + 8 + 1 = 41

• allows more efficient sequence storage

– 1 byte per 4 nucs

– Can be important for some tasks (e.g. assembly of large # 

reads)

• Can be used for table locations for short word lengths

– Not ideal: many ‘collisions’
21



Hashtables vs suffix arrays

• Advantages of hashtables: 

– only O(N) to construct table, O(1) to lookup an 

entry

• Disadvantages: 

– less memory efficient

– requires choice of a fixed word length w

– (slightly) harder to program
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