
1

• Algorithms & computation time

• Finding exact sequence matches using

suffix arrays

• Hashtables

Lecture 2

2

Algorithms – Some General Remarks
• The most widely used algorithms are the oldest

– e.g. sorting lists, traversing trees, dynamic programming.

The challenge in CMB is usually not finding new
algorithms,

but rather

– finding biologically appropriate applications of old ones.

• Often prefer

– suboptimal but easy-to-program algorithm over more optimal one

– or space-efficient algorithm over time-efficient one.

• Probabilities are important in

– interpreting results

– guiding search

The most powerful analyses generally involve probabilistic
models, rather than deterministic ones.

Genomes are big,

but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz

– potentially billions of CPU instructions / sec

• a gigabase (N = 109) genome can be

analyzed even with 1000s of operations per

base

– 1000 × 109 cycles < 20 min

3

But not that fast!

• O(N2) analysis of a gigabase genome is impractical

(unless the constant factor is much less than 1):

– 1018 cycles ≈ 109 seconds ≈ 32 yrs

4

• Compared to CPU operations,

– ‘cache misses’ (non-cache memory accesses) are very
slow (100s of cycles)

– disk accesses are even slower (1000s of cycles)

• But both acquire multiple bytes at once; so
accessing data sequentially (in chunks) is better
than non-sequentially

– Burrows-Wheeler is slow!

• Using an interpreted language may multiply your
cycles by a factor of 10 or more

5

Important practical considerations

with genome-scale data sets

66

Finding perfectly matching

subsequences of a sequence

• Idea (much more efficient than ‘brute force’

approach):

– suffix array (Manber & Myers, 1990)

– make list of positions in sequence

– each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of

sequence

– lexicographically sort list of pointers

– process the list: adjacent entries are “maximally

agreeing”

Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

7

• The ‘pointers’ are just positions

(represented by integers) – not (necessarily)

memory addresses

• Do not store the substrings!

– and make sure your program doesn’t

(unintentionally) do this!

8

Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

9

Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27

10

1111

Finding Matching Subsequences

Using the Sorted List of Pointers

• Perfectly matching subsequences

– (more precisely – the pointers to the starts of those

subsequences)

are “near” each other in the sorted list

• For a given subsequence, a longest perfect match

to it is adjacent to it in the sorted list

– (there may be other, equally long matches which are

not adjacent, but they are nearby).

1212

• Can use to find matches among multiple sequences

by concatenating them (+ reverse complements)

– e.g. sequence assembly of a large # of reads

• HW #1 asks you to apply this algorithm to find:

– perfectly matching subsequences in 2 genomic sequences

& their reverse complements.

• much faster than an O(N2) algorithm (e.g. Smith-

Waterman, or even BLAST), but

• limited to finding exact matches

13

Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.

f(N) = .05 N3 + 50.7 N2 + 6.03 N

for

– running time in secs, or

– space in kbytes,

as function of the size N of input data set.

• But

– tedious to derive, &

– depends on hardware & software implementation details.

14

• Instead, more customary to give “the” asymptotic

complexity, i.e. expression g(N) such that

C1g(N) < f(N) < C2g(N)

for some constants C1 and C2 , and N large enough.

• This is written O(g(N)), where notation O() means

“up to an unspecified multiplicative constant”.

– e.g. for the f(N) above, the dominating term for large N is

.05 N3, so

• can take g(N) = N3

• asymptotic complexity = O(N3).

15

• Useful as rough guide to performance, but can be

misleading:

– for small N a different term may dominate

• e.g. 2d term in above example more important for N < 1000

– size of constant may be quite important

• (big difference between .05 and 5,000,000!)

• e.g. BLAST and Smith-Waterman both O(N2), but size of

constant enormously different

• ‘cache misses’ and disk accesses often dominate running time,

yet are invisible to complexity analysis (because affect constant

factor only)

16

• Another limitation: time or space requirement may
depend on specific characteristics of input data.

• Usually give “worst case” complexity

– applies to the worst data set of a given size,

but

– in biological situations the average biologically
occurring case is

• more relevant

• often much easier than worst case (which may never arise in
practice), or even “average case” in some idealized sense.

Exponents & logarithms

• loga(a
b) = b, aloga(b) = b (log inverts exp)

• ab+c = ab ac loga(df) = loga(d) + loga(f)

• (ab)c = abc loga(d
f) = f loga(d)

• a0 = 1 loga(1) = 0

• a1 = a loga(a) = 1

• a-b = 1 / ab loga(1 / d) = -loga(d)

• logc(b) = loga(b) / loga(c)

17

• 4 = 22

• 45 = 210 = 1024 ≈ 103

• 410 = 220 ≈ 106

• 415 = 230 ≈ 109

• 4n = # DNA ‘words’ of length n

• log4(109) ≈ 15

18

1919

(Average Case) Complexity Analysis

of Suffix Array algorithm
• If N = sequence length, sorting can be done with

– O(Nlog(N)) comparisons,

– each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))2).

– (Processing the sorted list requires an additional O(Nlog(N)) steps – doesn’t
affect the overall complexity).

– N.B. cache misses are a significant factor!

• Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

• several O(N) algorithms are now known – but the best
implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

•  other, older O(N) methods (‘suffix trees’), but these are
– much less space efficient,

– harder to program, and

– (probably) slower in practice

Hashtables

• Like suffix arrays, they store locations of

subsequences in a way that allows quick finding of

matches

• But using subsequences (or words) of a fixed

length w

• Idea: work thru the sequence a base at a time.

– for the word starting at position p :

• Convert the word into a table location

• If that location is already occupied, find a nearby unoccupied

one

• Store p, and (if necessary) enough additional information to

reconstruct the word
20

Nucleotides to numbers

• Let (for example)

A = 0, C = 1, G = 2, T (or U) = 3

• Then any (short) sequence has corresponding #,

e.g:
AGGC = 0 x 4^3 + 2 x 4^2 + 2 x 4^1 + 1 = 0 + 32 + 8 + 1 = 41

• allows more efficient sequence storage

– 1 byte per 4 nucs

– Can be important for some tasks (e.g. assembly of large #

reads)

• Can be used for table locations for short word lengths

– Not ideal: many ‘collisions’
21

Hashtables vs suffix arrays

• Advantages of hashtables:

– only O(N) to construct table, O(1) to lookup an

entry

• Disadvantages:

– less memory efficient

– requires choice of a fixed word length w

– (slightly) harder to program

22

