Lecture 5

« Comparing probability models:
likelthood ratios

— Hypothesis testing
— Neyman-Pearson lemma

« Welight matrices
e Score distributions




Comparing Alternative
Probability Models

« We will want to consider more than one model at a
time, in following situations:

— To differentiate between two or more hypotheses about
a sequence

— To generate increasingly refined probability models
that are progressively more accurate



First situation arises In testing biological assertion,
e.g. “1s this a coding sequence?”
— Compare two models:

1. model associated with a hypothesis Hygiqq,

— assigns each sequence the prob of observing it under expt of
drawing a coding sequence at random from genome

2. model associated with a hypothesis H,;qding:

— assigns each sequence the prob of observing it under expt of
drawing a non-coding sequence at random



Likelihood Ratios

* The likelinood of a model M given an observation
SIS
L(M|s) =P(s| M)
This 1s not the probability of the model! — (the sum
over all models is not 1).
 The likelihood ratio (LR) of two models M, and

M, IS given by L(M
LR(M .M [9)= o e
0

The numerator and denominator may both be very
small!

« The log likelthood ratio (LLR) is the logarithm of
the likelthood ratio.




Simple Hypothesis Testing

» Suppose we wish to decide between two models:
— M, (the alternative hypothesis), and
— M, (the null hypothesis)

using an observation s from a sample space S. (e.g.
— S a Sequence,
— M, a site model
— M, a “background” (non-site) model.

« Strategy:

— choose a subset C — S, called the critical region for the
comparison.

— If s falls within C, reject M,, (accept M,),
— otherwise accept M, (reject M,).



Types of Errors with Hypothesis Test

 a Type I error occurs if we reject M, when It Is
true.

—For a given critical region C, the prob of
committing a Type | error iIs denoted o

o = P(C [ Mp) =2 P(s | M)
* o, IS called the significance level of the test




Sample Space S — probabilities under M,

el error if M, true)

Critical Region C



« a Type Il error occurs if we accept M, when it
IS false.

—For a given C, prob of committing a Type Il error
IS denoted B,

Bc=2.cP(s|M,)=1-P(C|M,)
« - =1-Is called the power of the test.



Sample Space S — probabilities under M,

Critical Region C



 Designing a test involves a tradeoff between
significance and power

—smaller C gives smaller Type I error but larger
Type Il error (lower power).

10



Likelithood Ratio Tests

* A likelihood ratio test of models M, and M,, Is a
hypothesis test of the two models, with critical
region C defined by

C=C,={s|LR(M,, M, |s)> A}
for some non-negative constant A, the cutoff value.
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* Neyman-Pearson lemma motivates use of the
likelthood ratio as an optimal discriminator, or
“score”

— even 1n contexts where we aren’t explicitly testing

hypotheses.

 any monotonic function f(LR) of likelihood ratio
has equivalent optimality properties
— because defines the same set of critical regions:
LR(M,, M, | 5) = A < f(LR(M,, M, | s)) = f(A)
 convenient to take f to be the log function, In
which case we get the log likelihood ratio.
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Neyman-Pearson lemma

Let M, and M, be two models, and C , the critical region
defined by a likelihood ratio test of M, vs. M, with

— cutoff value A,
— significance level a ,, and
— powerm,=1-8,.
Then if C Is any other critical region, we have
— foac<a,,thenn.<mn,(and B->B,)
—lfoac=a,,thenn-<n,(@nd B.=p,)
In other words, the likelihood ratio test with significance
level o, Is the most powerful test
— (has the lowest type Il error rate)

with that significance level.
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|ldea of Neyman-Pearson lemma proof:

M, probabilities

C

M, probabilities

C

Z, < Az,

Oc < O
= 7y < X
= A7y < AX,

= 7, <X,

= Tc < T,




= Proof: Suppose o < a ,.Then

ZP(S|M0)< ZP(SlMo)

Subtract from both sides the terms involving
s e Cn C, This leaves

1) 3 PGIM)< S P(sIM,)

seC\C, seC,\C
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By definition of the likelihood ratio test, for
any observation s,
seC, < P(s|M,)>AP(s|M,)

 From this, it follows that
@) > IeeiM)< TPsIM,)

and
(3) X P6IM)< ¥ PGIM,)

seC,\C seC,\C
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« Combining (2), (1), and (3)

> %P(S||\/|a)< D P(sIMy)< > P(sIMgy)< > %P(SW&)

seC\C, seC\C, seC,\C seC,\C

so (cancelling the common factor 1/ A)
>, P(sIM,)< > P(s|M,)

seC\C, seC,\C

so, adding In the terms correspondingtos e Cn C,
D P(sIM,)< X P(s|M,)
i.e n. < 1, The other part of the lemma (. < 7,
If o = a ) IS proved similarly.
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Weight Matrices for Site Models

* LR for sites: (prob under site model) / (prob
under non-site (background) model)

P (S | M)
P(Sl I\/Isite) 13.@1 t

P(S | M background) H Pl (Si | M background)

1<i<n

() LLR — Zlog(R (Si | Msite))_ |Og(P| (Si | I\/Ibackground ))

1<i<n

— compute by reading from a matrix whose i-th column
contains values 109(R, (r | Mg)) - 109(P (1 | M pggrouna )
for each residue r (with r labelling the rows).
« We use log,.
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Example: 3’ splice sites in C. elegans

 For background distribution take

— genomic residue freqs computed from C. elegans
chrom. I:

A 4575,132: 0.321
C 2,559,048: 0.179
G 2,555,862: 0.179
T 4,582,688: 0.321
— other choices are possible, e.g. composition of
transcribed regions
 For the site distribution we take
— site residue fregs from 8192 sites:
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Weight Matrix — 3’ Splice Sites

SITE FREQUENCIES:

A

H @ O

0.400 0.429 0.282
0.118 0.079 0.081
0.072 0.070 0.063
0.409 0.422 0.574

0.058
0.029
0.018
0.896

BACKGROUND FREQUENCIES:

A 0.321 0.321 0.321
c 0.179 0.179 0.179
G 0.179 0.179 0.179
T 0.321 0.321 0.321
WEIGHTS:

A 0.32 0.42 -0.18
C -0.60 -1.18 -1.15
G -1.31 -1.35 -1.51
T 0.35 0.39 0.84

0.321
0.179
0.179
0.321

-2.46
-2.64
-3.35

1.48

.008
.016
.005
971

o O O o

.321
.179
.179
.321

o O O o

-5.29
-3.51
-5.23

1.60

.092
.135
.073
.700

o O O o

.321
.179
.179
.321

o O O O

-1.79
-0.41
-1.30

1.12

.029
.834
.001
.135

o O O o

.321
.179
.179
.321

O O O o

-3.45
2.22
-6.93

.000
.000
.000
.000

oOoor

.321
.179
.179
.321

O O O O

1.64

-99.00
-99.00

.000
.000
.000
.000

o R OO

.321
.179
.179
.321

o O O O

-99.00
-99.00
2.48

-1.24 -99.00 -99.00

.410
.156
.310
.124

O O O o

.321
.179
.179
.321

o O O O

0.36
-0.20
0.79
-1.37

.293
.187
.159
.361

o O o o

.321
.179
.179
.321

o O O O

-0.13
0.06
-0.17
0.17

.307
.225
.191
.276

O O O o

.321
.179
.179
.321

o O O o

-0.06
0.33
0.10

-0.22
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H o QP

Scoring a Candidate 3° Splice Site

0.32 0.42 -0.18
-0.60 -1.18 -1.15
-1.31 -1.35 -1.51

0.35 0.39 0.84

-2.46
-2.64
-3.35

1.48

-5.29
-3.51
-5.23

1.60

-1.79
-0.41
-1.30

1.12

A

-3.45 1.64 -99.00
2.22 -99.00 -99.00
-6.93 -99.00 2.48
-1.24 -99.00 -99.00

C A G

0.35+0.39 +-1.15 + 1.48 + 1.60 +-1.79 + 2.22 + 1.64 + 2.48

0.36
-0.20
0.79
-1.37

+ 0.36

-0.13
0.06
-0.17
0.17

+-0.13

-0.06
0.33
0.10

-0.22

+-0.22

=17.23
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« General def.: a weight matrix W has
entries w; iIndexed by residuesr e A,and 1 <j<n

 score of asequence s =(s;S,...S,) IS

ZWSjj

1< J<n

* In the site case,
er — |Og(Pj(r | Msite)) - |Og(Pj(r | M background ))
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Score Distributions (AG sites)—
3° SS Weight Matrix

D P

o P B

D

:

A ©® HFH N B

i
D
D
N

o

>J &

« True 3'SS + Random

30

23



Score Distributions (AG sites)—
3° SS Weight Matrix

shoulder — representing
true sites?

= Genome +» Random
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Some Issues for Site Weight Matrices
(to be discussed later)

« Can derive theoretical probability distribution for
scores, and compare with above empirical
distributions

« Small sample correction to frequencies:
pseudocounts

« Avoiding overfitting (e.g. using too large a window)

25



