Lecture 7:
DAGs & Dynamic Programming

 Directed acyclic graphs

» Dynamic programming (‘The Fundamental
Algorithm of Computational Biology’)

— highest weight paths in weighted DAGs

Directed Graphs

A directed graph is a pair (V, E) where
— V is a finite set of vertices, or nodes.

— E 1s a set of ordered pairs (called edges) of vertices In
V.

An edge (v;, v;) Is said to leave v; and to enter v;.
— (v; and v; are vertices)

In-degree of a vertex = # edges entering It;
out-degree = # edges leaving It.

Example:

. V={1,2,3,4,5,6},

- E={1.2), (1,3), (2,4), (4,1), (5,3), (3,1)}
* Vertex 3 has in-degree 2 and out-degree 1.

1 - - 3
\\6 \
2), S

Paths and Cycles

A path of length k in G from u to «’ (vertices) Is

— a sequence P of vertices (v, vy, . . ., V,) such that
¢ V,=U,
* vV, =u’,and
e (vi;,Vv;)Isanedgefori=1,2,.. .k

A path can have length 0.
We write |P| = k.

A cycle 1s a path of length > 1 from a vertex to itself.
In example at right,

1 - - 3
— (1,2,4) i1s a path,
— (1,3,5) is not, and \ 9 \
— (1,2,4,1) and (1,3,1) are cycles. 2 5
\ 4

 Can join
—any path (u, ..., v) fromutov,to
—any path (v, ... ,w) fromvtow

to get a path (u, ..., v, ..., w) from u to w.

DAGS

« A directed acyclic graph (DAG) is a directed graph with
no cycles.
» Ina DAG, for distinct nodes v; and v;, we say
— v;isa parent of v;, and v; Is a child of v;, If
» there Is an edge (v;, v;)
— vjIsan ancestor of v;, and v; Is a descendant of v, If
» there is a path fromv; to v,

* |Ina DAG the length of a path cannot exceed |V| - 1,
— (where |V| = total # vertices in graph)
because

— In a path of length > |V,
« at least one vertex v would have to appear twice in the path;
— but then there would be a path from v to v, i.e. a cycle.

Structure of DAGS

» Define the depth of anodevinV as:
— the length of the longest path ending at v;

by above, the depth is well-defined and < |V| - 1.

» Every descendant w of a node v has higher depth
thanv: If

— (U, ... ,v) Is path of length n = depth(v) ending at v,
and

— (v, ..., w) Is path from v to w,
then (u, ..., v, ..., w) Is a path of length > n ending
at w, so depth(w) > n.

» The nodes on any path are of increasing depth.

» Every node v of positive depth has a parent of depth
exactly one less:
— Let (u, ..., v’, v) be path of length n = depth(v) ending at v.
— Then v’ is a parent of v.
— Since (U, ..., v’) has length n — 1, depth(v’) > n — 1.

— Since also depth(v’) < n (because v is a descendant of v°),
depth(v’) Is exactly n — 1.

Important special cases:

* A (rooted) tree iIs a DAG which

— has unique depth 0 node (the root), and

— every other node has in-degree 1
* (i.e. has a unique parent, of depth one less than that of the node).

« A Dbinary tree Is a tree in which
— every node has out-degree at most 2.

A linked list Is a tree in which
— every node has out-degree at most 1

— or equivalently, a DAG in which 3 at most one node of each
depth

10

binary tree

linked list

Vo

11

The Edit Graph for a Pair of Sequences

AP CPOG POT > T > G POAPO AP TP G &% APO CP CP CPOAPO
JAN VIVAN VIV VAV AN NIV NIV AN N
AN IVINANIVAV VAVAN VAV VAV AN N
SRVAVAVANAVAVAVANAVANAVANAVA VAN

4% L%

4% L%

RRRRRRRRRRRRRRRT

T
GV v

S INAVAN NNV NNV AN N NN NN
- :\::\: :\::\.‘:\::\: :\::\.‘:\::\: :\::\.‘:\::\: :\::
IAVAEVMANAVAVNAVAVANAVA AN ANA VAN

SANAVAVIVAVAVAVAVAVAVAVAVAVAMANY

WDAG for 3-state HMM,

length n sequence

weights are emission
probabilities e,(b;) for it
residue b;

weights are transition
probabilities a,,

o ; D1
position i-1 position | position i1+1

13

Remarks on Depth Structure

 For dynamic programming algorithm
— we need an order vy, V,, ..., v, for the vertices
* (not a path!)
In which parents appear before children.

— From the above, depth order
* (in'which depth 0 nodes are listed first, then depth 1 nodes, etc.)

IS such an order.
— In general there are many other such orders.
 We haven’t given constructive procedure for finding
the depths of all vertices.
— For an arbitrary DAG, can be done in O(|V| + |E|) time;

— we omit algorithm, since for DAGS related to sequence
analysis, the depth structure is obvious.

14

Weighted Directed Graphs

« A weighted directed graph is
— a directed graph (V, E) together with

— a function w from E to the real numbers,

* I.e. with a numerical weight w(e) (which may be positive,
negative, or 0) associated to each edge e.

A weighted DAG is called a WDAG.

* In our applications, the weights usually come
from a probability model:

— probabilities
— log(probabilities)
— LLRs

15

Path Welights

The (sum) weight of a path is defined to be the
sum of the weights on the edges of the path.

Similarly, the product weight of a path is the
product of the edge weights

— usually only consider this when all weights are non-
negative.

weight of a path P is written w(P)
For a path of length O (i.e. consisting of a single
vertex):

— the sum weight i1s O
— the product weight is 1

16

Highest Weight Paths on
WDAGS

* Problem: find a path with the highest possible
welght.

e Solution:

— “Brute force” approach

* 1.e. simply enumerating all possible paths and comparing their
weights

Is usually impractical (too many paths!)

— Instead, use the method of dynamic programming
 Richard Bellman (~1950)

 Reduction to nested subproblems
17

e LetP, =(vy vy, ..., V,) bea path of highest weight.
« Then for each k <n, the sub-path P, = (v, V¢, . . ., V)
must have highest weight of all paths ending at v,,

because
—1fQ = (ugy, Uy, ..., V,) were another path ending at v, and
having higher weight than P,,
— then the path (Q, v\,4, ..., V) would have weight
W((Q, Virg s o Vi) = W(Q) + W((Vy, -.., V)
= W(Pk) t W((Vk’ " Vn)) = W(Pn)1

contradicting assumption that P, has highest weight.

18

Subpaths of a highest-weight path
can’t be improved:

19

» S0 generalize the problem as follows:

 find, for each vertex v, the highest weight of all paths
ending at v — call this w(v)

 Can find w(v) in single pass through V, as follows:

— process the v in depth order (or any order in which parents
precede children)

— 1f v has no parents, w(v) = 0 (the only path ending at v is (V)).

— for any other v, except for the path (v) (which has weight 0), any
path ending at v is of form (v, V4, . . ., V., U, V). Then

— uis a parent of v, so w(u) has already been computed, and
W((Vo, Vg, - - Vi, U, V) < w(u) + w((u,v))
with equality for an appropriate choice of v;.
— Therefore we may compute w(v) as

w(v)=max(0, max (w(u)+w((u,v))))

u e parents(v)

20

Example

21

w(Vv) — depth 0 nodes

22

w(Vv) — depth 1 nodes

23

w(Vv) — depth 2 nodes

24

w(Vv) — depth 3 nodes

25

w(Vv) — depth 4 nodes

26

» To reconstruct best path, need “traceback” pointer to
Immediate predecessor of v In best path:

v w(v) =0

T =1 argmax (w(u) + w(u,v)) w(v)=0

| U € parents(v)

— In preceding graph, T(v) is the parent on red edge coming
Into v
« if more than one such edge, pick one at random;
 if no such edge, T(v) =v

« Sometimes useful to record beginning of best path:

3(V) Vv w(v) =0
(V)= {B(T) W(v) % 0

27

 Then highest weight of any path in graph is

rnaXV eV (W(V))

— updated as each node s visited
- indicated by in preceding graph —

and so doesn’t require additional pass through vertices
e If u=argmax, _, (w(v)), can reconstruct highest weight
path by tracing back from u, using T:
— path ends at u;
— Immediate predecessor of u is T(u);
— predecessor of T(u) is T(T(u)); etc.
— stop when T(v) = v.

* In preceding example, highest weight is 6 and u = vy,

28

Dynamic programming on WDAGS

29

Complexity of Dynamic Programming

« Time to find a best path is O(|E|+|V)):
— In Initial pass, visit each node, and each edge into that
node: O(|E|+|V])
— In traceback, visit subset of nodes, and unigue edge
from each node: O(|V|)

(Complexity to find all highest weight paths can be
higher)

For very large graphs, even O(|E|+|V|) may be
unacceptable!

30

Space requirements:
— If only want weight of best path, and beginning and end,
then

—don’t need T(v), and

—only need retain w(v) and B(v) until have processed all children
of v (or when best path found so far ends at v).

Space depends on graph structure, but usually << O(|V|).

— If want path itself, must store T(v) V v
—space = O(|V|)

— 3 algorithms (for some graphs) to reduce this, but may take
more time.

31

Imposing constraints on allowed paths

« Above algorithm can easily be modified to find highest
weight path that

 starts in particular subset J’ of vertices

— don’t consider paths that start outside V' :
* 1.e. when computing w(V), don’t consider trivial path unless v e V"’

e ends In particular subset V"’
— only scan for the maximum w(v) over "’

« goes through a particular vertex v
— use forward/backward algorithm (future lecture)

e 0oracombination of these!

32

Same dynamic programming approach
can be used to find:

» Highest product weight path (if weights are > 0)

« Sum of product weights of all paths ending at particular
vertex

— sum over all edges coming into v, instead of maximizing

« Useful for HMM and phylogeny probability
calculations!

33

Finding multiple high-scoring paths

o If high-weight paths are important, we’ll want more
than one!

— But not slight perturbations of highest-weight path

 ‘Brute force’ algorithm:
— Find highest-weight path
— ‘Mask 1t” (remove 1ts edges from graph)
— Repeat above two steps until scores uninteresting
— can be O(N?), but often acceptable

* O(N) algorithms for WLLs

— Ruzzo-Tompa
— HMMs (Viterbi algorithm)

34

