L_ecture 9:
Sequence Alignment

« Sequence alignment and evolution
— mutations

 Edit graph & alignment algorithms
« Multiple sequence alignment

— Higher-dimensional edit graphs

— Progressive alignment



Aligning sequences:
Major uses In genome analysIs

 To find relationship between sequences from
“‘same” genome, €.g.

— finding gene structure by aligning cDNA to genome
— assembling sequence reads in genome sequencing project
— NextGen applications: “Resequencing”, ChIPSeq, etc

Still need to allow for discrepancies
— due to basecalling errors & polymorphisms, introns

but exact match methods (hashtables, suffix arrays)
do most of the work



 To detect evolutionary relationships among
sequences:

— tlluminating protein structure and function via distant
matches

— illuminating mutation and selection in genomes
* helps find non-neutrally evolving (functional) regions

Here, frequent discrepancies make finding the
alignment more challenging



» Often we’re interested 1n details of alignment
— (1.e. precisely which residues are aligned),

but

« sometimes only care whether alignment score Is
large enough to imply sequences are related



Sequences & evolution

 Similar sequences of sufficient length usually
have a common evolutionary origin

— 1.e. are homologous
 For a pair of sequences

— “% similarity”” makes sense

— “% homology” doesn’t

 |In alignment of two homologous sequences

— differences mostly represent mutations that occurred
In one or both lineages, but

— Not all mutations are inferrable from the alignment



Mutation types

» single-base substitution error by DNA polymerase
— most common type?

» strand slippage error by polymerase, inserting or
deleting one or more bases

» DNA damage (radiation, or chemical) + error-
prone repair, possibly altering more than one
nucleotide, e.g.

— CpG (hydrolytic deamination of methyl C)

— dinucleotide changes, perhaps UV-induced
dipyrimidine lesions (Science 287: 1283-1286)



Rearrangements (break and rejoin)

— Inversion (2 breaks on same chromosome)

— Translocation (2 breaks on different chromosomes)
— More complex (> 2 breaks)

Duplication of a segment
Deletion of a segment
Insertion/excision of transposable element

Acquisition of DNA from another organism
(“horizontal transfer™)



Mutation rates may depend on:

* lineage (organism): no universal “molecular clock”
« sex: e.g. In mammals, mut rate higher in males than females
* type of change —e.qg.
— replacement (“substitution’) of one nucleotide by another more
freq than indels (insertions or deletions)
— transition replacements
 pyrimidine — pyrimidine (T <> C), or purine — purine (A < G)
more freq than transversion replacements
 pyrimidine — purine, or purine — pyrimidine
— GC or AT bias in some organisms

* e.g. G—>A more freg than A—>G in most eukaryotes
— causes most genomes to be relatively A+T rich

— (small) deletions generally more frequent than (small) insertions



 seguence context (e.g. CpG effect)

* position in sequence — some sites more slowly changing
than others, due to

— selection — e.g. In coding sequences,

» indels strongly selected against because would disrupt reading
frame;

* non-synonymous changes less freq than synonymous
— variation in underlying mutation rate (cf. mouse genome
paper)

« may in part depend on replication timing (late replication less
accurate)



typical per base subst rates in non-coding DNA:
— ~1 x 107 per base per year (order of magnitude)
— in humans, about 10-° / base / year, = 2 x 108 / base / generation
= 120 / diploid genome / generation
(recent de novo estimates are lower!)
freq of gene duplication is ~ 10-8 per gene per year (Science
290: 1151-1155)

freq of simultaneous dinuc substitutions is ~ 10-1° per dinuc
Site per year (Science 287: 1283-1286)

freq of CpG = TpG or CpA changes is ~10-fold higher (per
CpG) than other substs in mammalian DNA,;
— may account for ~20% of all substitutions.
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(Observed) ALIGNMENT: .acagaatcagggtcccgtta...
(may not be unique!) .accgaatcagg-tcccgtcea. ..

(Unobserved) MUTATION HISTORY (in general, this is not
even inferrablel):  accqaategggteccgtta...

/

...acagaatcgggtcccgtta...
...accgaatcaggtcccgtta...
...acagaatcaggtcccgtta...
/ ...accgaatcaggtcccgtca...
..acagaatcagggtcccgtta...
/ ONLY OBSERVED SEQUENCES \
\

...acagaatcagggtcccgtta ...accgaatcaggtcccgtca...
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Complications

e Parallel & back mutations

= estimating total # of mutations requires
statistical modelling

« Segmental mutations
— duplications & other large indels
— Inversions
are not well modelled by alignments

— genome-scale alignments usually done ‘in
pieces’
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Sequence alignments correspond to
paths in a DAG!

13



The Edit Graph for a Pair of Sequences
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« The edit graph 1s a DAG.

— Except on the boundaries, the nodes have in-degree and
out-degree both 3.

» The depth structure is as shown on the next slide.
Child of node of depth n always has
— depth n + 1 (for a horizontal or vertical edge), or
— depth n + 2 (for a diagonal edge).
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Depth Structure
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» Paths in edit graph correspond to alignments of
subsequences

— each edge on path corresponds to an alignment column

— diagonal edges correspond to column of two aligned
residues
— horizontal edges correspond to column with
» residue in 1%t (top, horizontal) sequence
e gap in the 29 (vertical) sequence
— vertical edges correspond to column with

» residue in 29 sequence
e gap in 15 sequence
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Above path corresponds to following alignment (w/ lower case letters

aCGTTGAATGAccca
gCAT-GAC-GA

considered unaligned):



Weights on Edit Graphs

 Edge weights correspond to scores on alignment columns.

 Highest weight path corresponds to highest-scoring
alignment for that scoring system.

« Weights may be assigned using

— a substitution score matrix
e assigns a score to each possible pair of residues occurring as alignment
column

— or profile
« scores specific to a particular sequence

and
— a gap penalty
e assigns a score to column consisting of residue opposite a gap.

based on appropriate probability models (next lecture!)



Alignment algorithms

« Smith-Waterman algorithm to find highest scoring
alignment

= dynamic programming algorithm to find highest-
welight path
— Is a local alignment algorithm:

» finds alignment of subsequences rather than the full sequences.

 Can process nodes in any order in which parents
precede children. Commonly used alternatives are
— depth order

— row order
— column order
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Depth Structure
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Complexity

For two sequences of lengths M and N, edit graph has
— (M+1)(N+1) nodes,
— 3MN+M+N edges,
time complexity: O(MN)
space complexity to find
highest score and beginning & end of alignment

IS O(min(M,N))
(since only need store node’s values until children processed)

space complexity to reconstruct highest-scoring alignment:
O(MN)
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 For genomic comparisons may have
— M, N~ 10° (if comparing two large genomic segments), or
— M~ 103, N ~ 10° (if searching gene sequence against entire
genome);
in either case MN ~ 10%2,
« Time complexity 102 is (marginally) acceptable.

1 speedups which reduce constant by

— reducing calculations per matrix cell, using fact that score
often 0

e (our program swat).
» still guaranteed to find highest-scoring alignment.
— reducing # cells considered, using nucleating word matches
« (BLAST, or cross_match).
 Lose guarantee to find highest-scoring alignment.
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Multiple sequence alignment

* More sequences =>
— (potentially) more accurate alignments
— better resolution of mutations, selection

* Need > 2 sequences to polarize mutations

 An evolutionary tree relates the sequences!
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The Edit Graph for a Pair of Sequences
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Multiple Alignment via
Dynamic Programming

« Higher dimension edit graph
— each dimension corresponds to a sequence; co-ordinates
labelled by residues
— Each edge corresponds to aligned column of residues (with
gaps).
— Can put arbitrary weights on edges; in particular,

« can make these correspond to probabilities under an evolutionary
model (Sankoff 1975).

— 1mplicitly assumes independence of columns
 Highest weight path through graph again gives optimal
alignment
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Generalization to Higher Dimension

Each “cell” in 3-dimensional case looks like this:

\Y4

M %

Each edge projects onto a gap or residue in each
dimension, defining an alignment column; e.g. red

edge defines Vv

M
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» # edges & # vertices are proportional to product of
sequence lengths.

— For k sequences of size N, is of order O(NK)
 impractical even for proteins (N ~ 300 to 500 residues) if k > 5:

300°=2.4 x 10%?
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Multiple alignments: paths in huge WDAGS

 To find high-scoring paths, need to
— reduce size of graph
— restrict allowed weighting schemes, and/or
— sacrifice optimality guarantees

« Durbin et al. discuss methods implementing these ideas:
— Hein
— Carillo-Lipman
— progressive alignment (e.g. Clustal)

« HMMs provide nice (but not guaranteed optimal) approach
for constructing multiple alignments
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Progressive alignment

« Simplest version: align one sequence (the
reference) to each of the others, pairwise;
construct multiple alignment from that.

« More generally, progressively align pairs of
(sequences or) alignments, using a guide tree

— Tree may reflect evolution, or sequence quality
— Will tend to be more accurate

* Revise gaps
— correct errors due to gap placement & gap attraction
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Alignments

Guide Tree

(k,J, 1, s, u)

Sequences
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« Complexity: N? x (n— 1) where
— N =seq length, n = # seqs
Instead of N"
« (does not count gap correction)
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