Genome-540 class 16

Chengxiang Qiu

HW7: D-segments Revisited

HW7: D-segments Revisited

- Same input data as for HW6 (file of read-start counts for chromosome 16)
- Computing a new scoring scheme for the read-start bins ($0,1,2$, and $>=3$)
- $\mathrm{S}=-\mathrm{D}=5$

HW7: D-segments Revisited

Output of HW6

Read $\operatorname{start} \cdot$ histogram \cdot for non-elevated copy-number \cdot segments:
$0=79164784$
$0=79164784$
1=8959527
2=694340
>3=49971
Read start histogram for elevated copy-number segments:
$0=1027142$
$1=255838$
2=40942
>3=35702

There are $8,422,401$ sites corresponding to sites with ' N ' in the reference genome and read alignments cannot start at an ' N '.

Non-elevated	Elevated	Non-elevated
CN segment	CN segment	CN segment

HW7: D-segments Revisited

1. Create a scoring scheme (for each count value $0,1,2,3$) based on the background and target frequencies, using LLRs with base 2 logarithms
```
Read start histogram for non-elevated copy-number segments:
M=79164784 Removing 8,422,401 sites from bkgd[0]
2=694340
>3=49971
Read start histogram for elevated copy-number segments:
0=1027142
1=255838
2=40942
>3=35702
```

Background frequencies:
0={\#.\#\#\#\#}
1={\#.\#\#\#\#}
2={\#.\#\#\#\#}
>=3={\#.\#\#\#\#}
Target frequencies:
0={\#.\#\#\#\#}
1={\#.\#\#\#\#}
2={\#.\#\#\#\#}
>=3={\#.\#\#\#\#}
Scoring scheme:
0={\#.\#\#\#\#}
1={\#.\#\#\#\#}
2={\#.\#\#\#\#}
>=3={\#.\#\#\#\#}

```

\section*{HW7: D-segments Revisited}
2. Write a program that uses the background frequencies above to simulate a sequence of read start counts. The length of this sequence should be the total length of the chromosome used in HW6 minus the number of N's (as given above).
```

N = length of sequence to be simulated
bkgd[r] = frequency of background sites with r read starts (r=0,1, 2, 3).
for each i = 1..N
x = random number between 0 and 1 (uniform distribution)
if }x<bkgd[0
sim_seq[i] = 0
else if x < bkgd[0] + bkgd[1]
sim_seq[i] = 1
else if x < bkgd[0] + bkgd[1] + bkgd[2]
sim_seq[i] = 2
else
sim_seq[i] = 3

```

\section*{HW7: D-segments Revisited}
3. Run your maximal D-segment algorithm on the simulated count sequence with \(S=-D=5\) and the above scoring scheme. Report a list of pairs, giving for each integer score \(s=5, \ldots 30\) the number \(\mathrm{N}_{\mathrm{s}}\) seg(s) of D -segments with score \(>=\mathrm{s}\).
4. Run your maximal D-segment algorithm on the 'real data' sequence of read starts used in assignment 6 with the above \(S\) and \(D\) values, scoring scheme, and list output.

We care about
```

{\# of segments with score >= S}

```

Simulated data:
50
60
70
80
90
100
sequence position

We care about
```

{\# of segments with score >= S}

```

\[
\begin{aligned}
& \text { Simulated data: } \\
& 5 \quad 1 \\
& 6 \\
& 6 \\
& 7
\end{aligned} 1
\]

We care about
```

{\# of segments with score >= S}

```

Simulated data:
\begin{tabular}{l}
5 \\
6 \\
6 \\
7 \\
7
\end{tabular}
82
9
9
10

\section*{HW7: D-segments Revisited}
```

Real data:

```
5 \{\# of segments with score \(>=5\}\)
- Output:
- Background/Target frequencies, and scoring matrix
- Two lists of pairs, one for the original 'real' data and another for the simulated data. Each row should contain:
- S-value
- Number of D-segments found
- A list of ratios based on the simulated data:
- Label each row N_seg( \(\left.\mathrm{S}_{\mathrm{i}}\right) / \mathrm{N} \_\)seg \(\left(\mathrm{S}_{\mathrm{i}+1}\right)\)
- Ratio of \#D-seg( \(\left.\mathrm{S}_{\mathrm{i}}\right) / \# \mathrm{D}-\mathrm{seg}\left(\mathrm{S}_{\mathrm{i}+1}\right)\) rounded to 2 dec.
- If there is a 0 in the denominator of your ratio, print -1
- Brief written answers to the questions posed in the assignment text
```

simulated data:
5 {\# of segments with score >= 5}
6 {\# of segments with score >= 6}
7 {\# of segments with score >= 7}

```

Ratios of simulated data:
N_seg (5) /N_seg (6) \{ratio\}
N_seg (6)/N_seg(7) \{ratio\}
\(\mathrm{N} \operatorname{seg}(7) / \mathrm{N} \operatorname{seg}(8) \quad\{r a t i o\}\)

HW7: Questions?

\section*{Forward-backward algorithm}


For each node:
- Forward: store the sum of probabilities of paths ending at position \(t\) state \(i\)

\section*{Forward-backward algorithm}


For each node:
- Forward: store the sum of probabilities of paths ending at position \(t\) state \(i\)
- Backward: store the sum of probabilities of paths starting at position \(t\) state \(i\)

\section*{Forward Algorithm}
1. Initialization:
\[
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
\]
2. Induction:
\[
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
\]

Build a dynamic programming table for these calculations
A G C

\begin{tabular}{|l|l|l|l|}
\hline & A & G & C \\
\hline State 1 & & & \\
\hline State 2 & & & \\
\hline
\end{tabular}

\section*{Backward Algorithm}
1. Initialization:
\[
\beta_{T}(i)=1, \quad 1 \leq i \leq N
\]
2. Induction:
\[
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
\]

Build a dynamic programming table for these calculations
A G C

\begin{tabular}{|l|l|l|l|}
\hline & A & G & C \\
\hline State 1 & & & \\
\hline State 2 & & & \\
\hline
\end{tabular}

\section*{Think about how to update parameters (A,B,Pi)}


Consider the probabilities at each node:
- Figure out the probability of being in state \(i\) at position \(t\)
\[
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)}
\]

\section*{Think about how to update parameters (A,B,Pi)}


Consider the probabilities at each edge:
- Figure out the probability of going from state \(i\) to state \(t\) from position \(j\) to position \(t+1\)
\[
\begin{aligned}
\xi_{t}(i, j) & =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{P(O \mid \lambda)} \\
& =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}
\end{aligned}
\]

\section*{Think about how to update parameters (A,B,Pi)}
\[
\begin{aligned}
\bar{\pi}_{i} & =\text { expected frequency (number of times) in state } S_{i} \text { at time }(t=1)=\gamma_{1}(i) \\
\overline{\mathbf{a}}_{i j} & =\frac{\text { expected number of transitions from state } S_{i} \text { to state } S_{j}}{\text { expected number of transitions from state } S_{i}} \\
& =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
\bar{b}_{i}(k) & =\frac{\text { expected number of times in state } j \text { and observing symbol } v_{k}}{\text { expected number of times in state } j} \\
& =\frac{\sum_{t=1}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} .
\end{aligned}
\]

\section*{Underflow - this is very important}
- This happens when numbers are too small to be stored in a variable
- Math Notation
- Biological Review Slides: Gene and genome structure in prokaryotes and el databases.
- Nature paper on human genome sequence

Nature paper on mouse genome sequence
Sapel et al. paper on PhyloHMMs \& sequence conservation
- hMM scaling tutorial
- HMM scaling tutorial (Tobias Mann)

Solutions:
- Scale weights to be close to 1 (affects all paths by same constant factor - which can be multiplied back later)
- Use log weights, so can add instead of multiplying
- Ex: Instead of 0.0001 * 0.0002, you can do:
\(\log (0.0001)+\log (0.0002)\)
What about when you need to sum probabilities in logspace? See this blogpost for a solution or Tobias Mann
https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-probspace/

\section*{Scale}

\section*{Forward}
- Initialization
\[
\begin{aligned}
\ddot{\alpha}_{1}(i) & =\alpha_{1}(i) \\
c_{1} & =\frac{1}{\sum_{i=1}^{N} \ddot{\alpha}_{1}(i)} \\
\hat{\alpha}_{1}(i) & =c_{1} \ddot{\alpha}_{1}(i)
\end{aligned}
\]
- Induction
\[
\begin{aligned}
\ddot{\alpha}_{t}(i) & =\sum_{j=1}^{N} \hat{\alpha}_{t-1}(j) a_{j i} b_{i}\left(O_{t}\right) \\
c_{t} & =\frac{1}{\sum_{i=1}^{N} \ddot{\alpha}_{t}(i)} \\
\hat{\alpha}_{t}(i) & =c_{t} \ddot{\alpha}_{t}(i)
\end{aligned}
\]
\begin{tabular}{|l|l|l|l|}
\hline & A & C & G \\
\hline State 1 & & & \\
\hline State 2 & & & \\
\hline & c1 & c2 & c3 \\
\hline
\end{tabular}
\[
\hat{\alpha}_{t}(i)=\left(\prod_{\tau=1}^{t} c_{\tau}\right) \alpha_{t}(i)
\]
\[
\mathbf{C}_{t}=\prod_{\tau=1}^{t} c_{\tau}
\]
\[
\log [P(O \mid \lambda)]=-\sum_{t=1}^{T} \log c_{t}
\]

\section*{Scale}

\section*{Backward}
- Initialization
\[
\begin{aligned}
& \ddot{\beta}_{T}(i)=1 \\
& \hat{\beta}_{T}(i)=c_{T} \ddot{\beta}_{T}(i)
\end{aligned}
\]
\[
\hat{\beta}_{t}(i)=\left(\prod_{s=t}^{T} c_{s}\right) \beta_{t}(i)=\mathbf{D}_{t} \beta_{t}(i)
\]
- Induction
\[
\begin{aligned}
& \ddot{\beta}_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \hat{\beta}_{t+1}(j) \\
& \hat{\beta}_{t}(i)=c_{t} \ddot{\beta}_{t}(i)
\end{aligned}
\]

\section*{Scale}
\[
\begin{aligned}
\bar{a}_{i j} & =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
& =\frac{\sum_{t=1}^{T-1} \alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\sum_{t=1}^{T-1} \alpha_{t}(i) \beta_{t}(i)} \\
& =\frac{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) / \mathbf{C}_{t} \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j) / \mathbf{D}_{t+1}}{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) / \mathbf{C}_{t} \cdot \hat{\beta}_{t}(i) / \mathbf{D}_{t}} \\
& =\frac{\left(\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j)\right) / \mathbf{C}_{T}}{\left(\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot \hat{\beta}_{t}(i) / c_{t}\right) / \mathbf{C}_{T}} \\
& =\frac{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j)}{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot \hat{\beta}_{t}(i) / c_{t}} .
\end{aligned}
\]
\[
\begin{aligned}
\bar{b}_{j}(k) & =\frac{\sum_{t=1, O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} \\
& =\frac{\sum_{t=1, O_{t}=v_{k}}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}}{\sum_{t=1}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}} .
\end{aligned}
\]
initial prob
\[
r 1(i)=a 1(i) * b 1(i) / c 1
\]
\[
\log [P(O \mid \lambda)]=-\sum_{t=1}^{T} \log c_{t}
\]

\section*{HW8: detecting G+C-rich regions (Baum-Welch)}
- Due 11:59pm Sunday, March 6
- Assignment: use Baum-Welch algorithm to identify G+C-rich regions in a genome sequence
- Input: FASTA
- Run Baum-Welch until the increase in sequence log-likelihood is less than 0.1
- Output:
- Name and first line of the FASTA file
- Number of iterations until convergence
- Final sequence log-likelihood
- Final probabilities (initial, transition, emission)
- Scientific notation, four significant digits (i.e., 9.000e-1; see template)

\section*{Notes for debugging}
1. Try calculating some simple forward and backward probabilities by hand to check your algorithm
2. The likelihood at each iteration should increase; if it decreases, then you have a bug
3. Have a print statement in your program to keep track of iterations as your program is running. The assignment will provide an estimate on the number of iterations to converge.```

