Genome-540 class 16

Chengxiang Qiu

HW?7: D-segments Revisited

HW?7: D-segments Revisited

e Same input data as for HW6 (file of read-start counts for chromosome 16)

« Computing a new scoring scheme for the read-start bins (0, 1, 2, and >=3)

e S=-D=§5

HW?7: D-segments Revisited

There are 8,422,401 sites corresponding to sites
with 'N' in the reference genome and read
alignments cannot start at an 'N'.

Output of HW6

Read -start-histogram:-for-non-elevated: - copy—-number-segments:
0=79164784

1=8959527

2=694340

23240971 Background

Read-start-histogram- for-elevated: - copy—number-segments:
0=1027142

1=255838

2=40942

335702 Target

Non-elevated Elevated Non-elevated

CN segment CN segment CN segment

HW?7: D-segments Revisited

1. Create a scoring scheme (for each count value O, 1, 2, 3) based on the
background and target frequencies, using LLRs with base 2 logarithms

Background- frequencies:
O=1{#.####}

Read-start-histogram-for-non—-elevated copy—-number-segments: ;zizzzzzi
0=79164784 : ' = Lif

2=694340
>3=49971

Target - frequencies:
O=1{#.####}
1={#.####}
2="#.####}

>=3={#. ####}

Read-start-histogram- for-elevated- copy—-number-segments:

0=1027142
1=255838
2=40942
>3=35702

Scoring-scheme:

O={#. ##i#i#}

1={#. #i#t##
log2(freq_target/freq_background) zzi#_ ####i

>=3={#.####}

HW?7: D-segments Revisited

2. Write a program that uses the background frequencies above to simulate a sequence of

read start counts. The length of this sequence should be the total length of the chromosome
used in HW6 minus the number of N's (as given above).

N = length of sequence to be simulated
bkgd[r] = frequency of background sites with r read starts (r =0, 1, 2, 3).
foreachi=1...N
B ackgrou nd X = random number between 0 and 1 (uniform distribution)
If X < bkgd[0]
sim_seq[i]=0
else if x < bkgd[0] + bkgd[1]
sim_seq[i] = 1
else if x < bkgd[0] + bkgd[1] + bkgd[2]
sim_seq[i] =2
else
sim_seq[i] =3

HW?7: D-segments Revisited

3. Run your maximal D-segment algorithm on the simulated count sequence withS=-D=5

and the above scoring scheme. Report a list of pairs, giving for each integer scores =25, ... 30
the number N seg(s) of D-segments with score >=s.

4. Run your maximal D-segment algorithm on the 'real data’' sequence of read starts used in
assighment 6 with the above S and D values, scoring scheme, and list output.

cumulative score

sequence position

We care about

{# of segments with score >= S}

Simulated data:

= O O I Oy Ul
o o o O

cumulative score

10

<

sequence position

We care about

{# of segments with score >= S}

Simulated data:
1

= O O I Oy Ul

We care about

{# of segments with score >= S}

Simulated data:

cumulative score

10

<

|—8_I

sequence position

= O O I Oy Ul

2

NN NN

HW?7: D-segments Revisited

e Qutput:
o Background/Target frequencies, and scoring matrix

o Two lists of pairs, one for the original ‘real” data and
another for the simulated data. Each row should
contain:

= S-value
= Number of D-segments found

o A list of ratios based on the simulated data:
« Label each row N_seg(S;)/N _seg(S,)
= Ratio of #D-seg(S;)/#D-seg(S.,,) rounded to 2 dec.
» If thereis a 0 in the denominator of your ratio, print -1

o Brief written answers to the questions posed in the
assignment text

Real data:

5 {# of segments
6 {# of segments
7 {# of segments

Simulated data:

5 {# of segments
6 {# of segments
7 {# of segments

wilith
wilith
wlth

wilth
wlth
wilth

SCore

SCore

SCore

SCore

SCore

SCOore

Ratios of simulated data:

N seg(5) /N seg(6){ratio}

N seg(6) /N seg(7)
N seg(7)/N seg(8)

{ratio}

{ratio}

o)
6}
I8

o)
6}
LB

HW7/: Questions?

Forward-backward algorithm
A G C

. >

e Forward: store the sum of probabilities of paths
ending at position t state i

For each node:

Forward-backward algorithm
A G C

4
A
I

e Forward: store the sum of probabilities of paths
ending at position t state i

For each node:

e Backward: store the sum of probabilities of paths
starting at position t state /

Forward Algorithm

1. Initialization:

2. Induction:

. _
a1 () = | Y ou(Dai| bj(O1), 1<t<T-1,1<j<N.
— _

Build a dynamic programming table for these calculations

C
_’v.\‘.
{ =

I O

State 1
State 2

Backward Algorithm

1. Initialization:

Br()) =1, 1<i<N

2. Induction:

N
By(i) = Zaijbj(0t+1):8t+l(j)a 1<t<T-1,1<j5<N.
j=1

Build a dynamic programming table for these calculations

C
_’v.\‘.
{ =

I O

State 1
State 2

Think about how to update parameters (A,B,Pi)
A G C

A
i

Consider the probabilities at each node:

 Figure out the probability of being in state j at position t

) a[(i) Bt(’) at(i) Bt(’)
'Yt(l) = = N

P(O|N)
22 ai) By(i)

=1

Think about how to update parameters (A,B,Pi)
A G C

o o 0

Consider the probabilities at each edge:

« Figure out the probability of going from state j to state t from position j to position t+1

ar(i) aijb;’(ot+1) 6t+1(j)
P(O[N)

(i) ;DO + 1) Brs4())

St(ir]) -

N N
P2 E i) a;bj(Oy 4 1) Brsa(j)

Think about how to update parameters (A,B,Pi)

m; = expected frequency (number of times) in state S; at time (t = 1) = v,4(1)
_ expected number of transitions from state 5, to state S,
i = expected number of transitions from state S,
r-1
E:] E1, /)
T—1
t =1 'Yt(l)
B(k) — expected number of times in state.j and‘ observi.ng symbol v,
’ expected number of times in state |
.
z§1 Yel))
s.t. O = vk

2. Y /)

t=1

Underflow - this is very important

COURSE-RELATED MATERIALS:

e Math Notation
. . . » Biological Review Slides: Gene and genome structure in prokaryotes and et
°® databases.
This happens when numbers are too small to be stored in a variable e @ @ @ esome s
» Nature paper on mouse genome sequence
e Siepel et al. paper on PhyloHMMs & sequence conservation
e Rabiner tutorial on HMMs
e HMM scaling_tutorial (Tobias Mann),

Solutions:

« Scale weights to be close to 1 (affects all paths by same constant factor — which can be
multiplied back later)

e Use log weights, so can add instead of multiplying
e Ex:Instead of 0.0001 * 0.0002, you can do:
log(0.0001) + log(0.0002)

What about when you need to sum probabilities in logspace? See this blogpost for a solution or
Tobias Mann

https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-
space/

https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-space/
https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-space/

A &
Scale State 1

State 2
Forward
cl c2 c3
e Initialization
ai(i) = ai(9)
. 1
1 — . .
qulil a1 (%)
&1(2) — 01&1(2.)
e Induction
N
(i) =) a1(4)a;ibi(Oy)
j=1
1
Ct = g
Ei]\il ot (%)

Q
[
/N
o~
SN’
|
®
[
Q:
[
VR
(N ST
p

Scale

e Initialization

e Induction

Backward
i) = 1
5T(i) — CTﬂT(i)
oo N A
Bi(1) = Zaz’jby‘(om)ﬁm(j)
Bt(z) — CtBt(i)

Scale

Z;F:l,ot:vk Y:(J)
23;1 Ye(7)

B Zle,Otzvk &:(5) - Bi(j) /e

b;j(k) =

gy = = &) S (i) i)/
! 231_11 ’Yt(')

Z? 11 ¢(2)a;;b;(Op11)Be41(7)

>t (i) B(i)
Zg;l 04(1)/Cy - ai50;(Og41) - Bt-l—l (7)/Deia .

1 o initial prob
D=1 (2)/Cy - Be(2) /Dy r1() = al(i) * b1(i) / c

(EZ;I &t(i) ' azy (Ot+1) ﬁt+1()) /CT

(X5 &) - Bi6) /o) /Cr
23_11 Giy(1) - ay;b (Ot+1) ﬂt+1()

>y (i) - Bi(9)/c log[P(O|))] = Zlogct

HWS: detecting G+C-rich regions
(Baum-Welch)

e« Due 11:59pm Sunday, March 6

e Assignment: use Baum-Welch algorithm to identify G+C-rich regions in a
genome sequence

e Input: FASTA
« Run Baum-Welch until the increase in sequence log-likelihood is less than 0.1

+ Output l0g[P(O)
« Name and first line of the FASTA file
« Number of iterations until convergence
 Final sequence log-likelihood
e Final probabilities (initial, transition, emission)
« Scientific notation, four significant digits (i.e., 9.000e-1; see template)

Notes for debugging

1. Try calculating some simple forward and backward probabilities by
hand to check your algorithm

2. The likelihood at each iteration should increase; if it decreases, then
you have a bug

3. Have a print statement in your program to keep track of iterations as
your program is running. The assignment will provide an estimate on
the number of iterations to converge.

