
Genome-540 class 16
Chengxiang Qiu



HW7: D-segments Revisited



HW7: D-segments Revisited

• Same input data as for HW6 (file of read-start counts for chromosome 16)


• Computing a new scoring scheme for the read-start bins (0, 1, 2, and >=3)


• S = -D = 5



There are 8,422,401 sites corresponding to sites 
with 'N' in the reference genome and read 
alignments cannot start at an 'N'.

HW7: D-segments Revisited

Output of HW6

Background

Target

Non-elevated 


 CN segment

Non-elevated 


 CN segment

Elevated 


 CN segment



1. Create a scoring scheme (for each count value 0, 1, 2, 3) based on the 
background and target frequencies, using LLRs with base 2 logarithms

HW7: D-segments Revisited

Removing 8,422,401 sites from bkgd[0]

log2(freq_target/freq_background)



HW7: D-segments Revisited
2. Write a program that uses the background frequencies above to simulate a sequence of 
read start counts. The length of this sequence should be the total length of the chromosome 
used in HW6 minus the number of N's (as given above).

Background



HW7: D-segments Revisited
3. Run your maximal D-segment algorithm on the simulated count sequence with S = -D = 5 
and the above scoring scheme. Report a list of pairs, giving for each integer score s = 5, ... 30 
the number N_seg(s) of D-segments with score >= s.


4. Run your maximal D-segment algorithm on the 'real data' sequence of read starts used in 
assignment 6 with the above S and D values, scoring scheme, and list output.



S

0

D

sequence position

cu
m

ul
at

iv
e 

sc
or

e Simulated data:


5 0


6 0 


7 0


8 0


9 0


10 0

We care about


{# of segments with score >= S}



S

0

D

sequence position

cu
m

ul
at

iv
e 

sc
or

e

10

We care about


{# of segments with score >= S}

Simulated data:


5 1


6 1 


7 1


8 1


9 1


10 1



S

0

D

sequence position

cu
m

ul
at

iv
e 

sc
or

e

10 8

We care about


{# of segments with score >= S}

Simulated data:


5 2


6 2 


7 2


8 2


9 1


10 1



HW7: D-segments Revisited
• Output:

oBackground/Target frequencies, and scoring matrix

o Two lists of pairs, one for the original ‘real’ data and 

another for the simulated data. Each row should 
contain:

▪ S-value

▪ Number of D-segments found 


oA list of ratios based on the simulated data:

▪ Label each row N_seg(Si)/N_seg(Si+1)


▪ Ratio of #D-seg(Si)/#D-seg(Si+1) rounded to 2 dec. 


▪ If there is a 0 in the denominator of your ratio, print -1


oBrief written answers to the questions posed in the 
assignment text

Real data:


5 {# of segments with score >= 5}


6 {# of segments with score >= 6}


7 {# of segments with score >= 7}


.


.


Simulated data:


5 {# of segments with score >= 5}


6 {# of segments with score >= 6}


7 {# of segments with score >= 7}


.


.


Ratios of simulated data:


N_seg(5)/N_seg(6){ratio}


N_seg(6)/N_seg(7) {ratio}


N_seg(7)/N_seg(8) {ratio}


.


.



HW7: Questions?



Forward-backward algorithm

For each node:

• Forward: store the sum of probabilities of paths 

ending at position t state i

 Backward: store the sum of probabilities of paths 
starting at position i state k

A G C



Forward-backward algorithm

For each node:

• Forward: store the sum of probabilities of paths 

ending at position t state i

•  Backward: store the sum of probabilities of paths 

starting at position t state i

A G C



Forward Algorithm

Build a dynamic programming table for these calculations 

A G C
A G C

State 1

State 2



Backward Algorithm

Build a dynamic programming table for these calculations 

A G C

State 1

State 2

A G C



Consider the probabilities at each node:

• Figure out the probability of being in state i at position t

A G C
Think about how to update parameters (A,B,Pi)



Consider the probabilities at each edge:


• Figure out the probability of going from state i to state t from position j to position t+1

A G C
Think about how to update parameters (A,B,Pi)



Think about how to update parameters (A,B,Pi)



Underflow - this is very important

• This happens when numbers are too small to be stored in a variable


Solutions: 

• Scale weights to be close to 1 (affects all paths by same constant factor – which can be 

multiplied back later)

• Use log weights, so can add instead of multiplying

• Ex: Instead of 0.0001 * 0.0002, you can do: 

   log(0.0001) + log(0.0002)

What about when you need to sum probabilities in logspace? See this blogpost for a solution or 
Tobias Mann

https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-
space/ 

https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-space/
https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-space/


Scale
Forward

A C G

State 1

State 2

c1 c2 c3



Scale
Backward



Scale

initial prob

r1(i) = a1(i) * b1(i) / c1



HW8: detecting G+C-rich regions 
(Baum-Welch)

• Due 11:59pm Sunday, March 6

• Assignment: use Baum-Welch algorithm to identify G+C-rich regions in a 

genome sequence

• Input: FASTA

• Run Baum-Welch until the increase in sequence log-likelihood is less than 0.1

• Output:

• Name and first line of the FASTA file

• Number of iterations until convergence

• Final sequence log-likelihood

• Final probabilities (initial, transition, emission)

• Scientific notation, four significant digits (i.e., 9.000e-1; see template)



Notes for debugging

1. Try calculating some simple forward and backward probabilities by 
hand to check your algorithm


2. The likelihood at each iteration should increase; if it decreases, then 
you have a bug


3. Have a print statement in your program to keep track of iterations as 
your program is running. The assignment will provide an estimate on 
the number of iterations to converge. 


