Genome 540 Class 17

Chengxiang Qiu

HW7 questions?

Agenda

- HW8 questions?
- Baum-Welch (forward-backward) algorithm example
- GENSCAN
- HW9 Introduction

A general definition of HMM

N states $S = \{s_1, ..., s_N\}$ M symbols $V = \{v_1, ..., v_n\}$

 $HMM = (S, V, B, A, \Pi)$ Initial state probability: $\Pi = \{\pi_1, ..., \pi_N\} \quad \sum_{i=1}^N \pi_i = 1$ $\pi_i : \text{ prob of starting at state } s_i$ State transition probability: $A = \{a_{ij}\} \quad 1 \le i, j \le N \quad \sum_{j=1}^{N} a_{ij} = 1$ $a_{ij} : prob of going \ s_i \rightarrow s_j$

Forward variables

Backward variables

Output probability:

$$B = \{b_i(v_k)\} \quad 1 \le i \le N, 1 \le k \le M \quad \sum_{k=1}^{M} b_i(v_k) = 1$$
$$b_i(v_k): \text{ prob of "generating "} v_k \text{ at } s_i$$

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations

		Α	С	G
Sta	ate 1			
Sta	ate 2			

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations A C G

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(C) = 0.2$

Α

	$\alpha_1(1)$	α ₂ (1)		
	Α	С	G	
State 1	0.32	0.0404		
State 2	0.02			
	α ₁ (2)			

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations

	$\alpha_1(1)$	α ₂ (1)	α ₃ (1)
	Α	С	G
State 1	0.32	0.0404	
State 2	0.02	0.069	

 $\alpha_1(2)$ $\alpha_2(2)$ $\alpha_3(2)$

Backward Algorithm

1. Initialization:

$$\beta_T(i) = 1, \qquad 1 \le i \le N$$

2. Induction:

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j), \qquad 1 \le t \le T - 1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(G) = 0.4$

Α

	$\beta_1(1)$	β ₂ (1)	β ₃ (1)	
	Α	C	G	
State 1		0.28	1	
State 2			1	
	β ₁ (2)	β ₂ (2)	β ₃ (2)	

Backward Algorithm

1. Initialization:

$$\beta_T(i) = 1, \qquad 1 \le i \le N$$

2. Induction:

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j), \qquad 1 \le t \le T - 1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(G) = 0.4$

5

Α

	β ₁ (1)	β ₂ (1)	β ₃ (1)
	Α	С	G
State 1		0.28	1
State 2		0.25	1
	β ₁ (2)	β ₂ (2)	β ₃ (2)

Scale

Forward

• Initialization

$$\begin{array}{rcl} \ddot{\alpha}_1(i) &=& \alpha_1(i) \\ c_1 &=& \displaystyle \frac{1}{\sum_{i=1}^N \ddot{\alpha}_1(i)} \\ \hat{\alpha}_1(i) &=& c_1 \ddot{\alpha}_1(i) \end{array}$$

$$\hat{\alpha}_t(i) = \left(\prod_{\tau=1}^t c_{\tau}\right) \alpha_t(i).$$

$$\mathbf{C}_t = \prod_{\tau=1}^t c_{\tau}$$

• Induction

$$\begin{aligned} \ddot{\alpha}_t(i) &= \sum_{j=1}^N \hat{\alpha}_{t-1}(j) a_{ji} b_i(O_t) \\ c_t &= \frac{1}{\sum_{i=1}^N \ddot{\alpha}_t(i)} \\ \hat{\alpha}_t(i) &= c_t \ddot{\alpha}_t(i) \end{aligned}$$

$$\log[P(O|\lambda)] = -\sum_{t=1}^{T} \log c_t.$$

Scale

Backward

• Initialization

$$egin{array}{rcl} \ddot{eta}_T(i) &=& 1 \ \hat{eta}_T(i) &=& c_T \ddot{eta}_T(i) \end{array}$$

$$\hat{eta}_t(i) = \left(\prod_{s=t}^T c_s\right) eta_t(i) = \mathbf{D}_t eta_t(i),$$

• Induction

$$\begin{aligned} \ddot{\beta}_t(i) &= \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \hat{\beta}_{t+1}(j) \\ \hat{\beta}_t(i) &= c_t \ddot{\beta}_t(i) \end{aligned}$$

Scale

$$\bar{b}_{j}(k) = \frac{\sum_{t=1,O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} \\ = \frac{\sum_{t=1,O_{t}=v_{k}}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}}{\sum_{t=1}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}}.$$

$$\begin{split} \bar{a}_{ij} &= \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \\ &= \frac{\sum_{t=1}^{T-1} \alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)}{\sum_{t=1}^{T-1} \alpha_t(i) \beta_t(i)} \\ &= \frac{\sum_{t=1}^{T-1} \hat{\alpha}_t(i) / \mathbf{C}_t \cdot a_{ij} b_j(O_{t+1}) \cdot \hat{\beta}_{t+1}(j) / \mathbf{D}_{t+1}}{\sum_{t=1}^{T-1} \hat{\alpha}_t(i) / \mathbf{C}_t \cdot \hat{\beta}_t(i) / \mathbf{D}_t} \\ &= \frac{\left(\sum_{t=1}^{T-1} \hat{\alpha}_t(i) \cdot a_{ij} b_j(O_{t+1}) \cdot \hat{\beta}_{t+1}(j)\right) / \mathbf{C}_T}{\left(\sum_{t=1}^{T-1} \hat{\alpha}_t(i) \cdot \hat{\beta}_t(i) / c_t\right) / \mathbf{C}_T} \\ &= \frac{\sum_{t=1}^{T-1} \hat{\alpha}_t(i) \cdot a_{ij} b_j(O_{t+1}) \cdot \hat{\beta}_{t+1}(j)}{\sum_{t=1}^{T-1} \hat{\alpha}_t(i) \cdot \hat{\beta}_t(i) / c_t}. \end{split}$$

initial prob Pi(i) = alpha_hat 1(i) * beta_hat 1(i) / c1

$$\log[P(O|\lambda)] = -\sum_{t=1}^{T} \log c_t.$$

HW8 tips

- Calculate first few steps by hand and make sure your program matches (exactly!)
- Create other small test cases
- Avoid underflow
 - Scale
 - Take the logarithm
- Let me know if any questions!

HW9: Evolutionarily conserved segments Due Sunday March-13 11:59pm

- ENCODE region 010 (chromosome 7)
- Multiple alignment of human, dog, and mouse
- 2 states: neutral (fast-evolving), conserved (slowevolving)
- Emitted symbols are multiple alignment columns (e.g. 'AAT')
- Viterbi parse (no iteration)

Input data

chr7:26924045-26924056
hg18 TGCTCACATTTT
canFam2---CTCACAGTTT
mm9----CGCTT-

chr7:26924057-26924120
hg18 CTAGAAGGATTAATGTTCTGTAGATCTATTGATCTTCTACAT
canFam2-TCAGAGGGATTAGTGTTCTGTGGATCTATTGATCTTCTGCAC
mm9-CCAGAGGGAGTGGTGTTCTGTAGATCTATCGACCTTC--CACGCAG

chr7:26924121-26924289
hg18 ATCATTAACAATACTTTGTTTTGATTTACTTGCCTGGTGTCT
canFam2-ATCATTAGCAACACTTTGTTCTGATCTACTTGCCTGTCATCCA
mm9-----ACTTCGCTCCACTTGCCTGACATCCAAGG

chr7:26924290-26924313 hg18 AATCTAATGTTTAGATTAGGGTTA canFam2 ------

mm9_____TAGA____TAGA____TA

N = 2 states M = 100 symbols

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
 - $_{\odot}$ This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - $_{\odot}$ Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
 - $_{\odot}$ This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
 - \circ This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - $\,\circ\,$ Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
 - $_{\odot}$ This depends on the specified probabilities:

• Process nodes in a sliding window

- Initiation
- Transition
- Emission

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
 - $_{\odot}$ This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - $_{\odot}$ Process nodes in a sliding window

HMM Diagram

Input

- Original maf format
 - Sequences broken into alignment blocks based on the species included
 - Official file format specs
- Homework file format
 - Only 3 species
 - Gaps in human sequence were removed and ambiguous bases replaced with 'A' for simplicity

<pre># chrX:1</pre>	152767699-152767743
hg18	ATAAAAACATTAAAAAAAAAAAAAAAAAAAAAAAAAAAA
canFam2	
mm9	
<pre># chrX:1</pre>	152767744-152767853
hg18	CAAGTTAGAGCTAGGCCATGCTTGCTTAAAGGAGTGGCTGTAATTTTAAACAAGGCTAGTGGGAAAGT
canFam2	
mm9	

Setting parameters

- Emission probabilities
 - Neutral state: observed frequencies in neutral data set
 - Conserved state: observed frequencies in functional data set
- Transition probabilities
 - Given in the assignment; more likely to go from conserved to neutral
- Initiation probabilities
 - Given in the assignment; more likely to start in the neutral state

Calculating Emission Probabilities

Neutral State: Ancient Repeat Sequences

Conserved State: Putative Functional Sites

AAA	10222095		AAA	2375583
AAC	481243		AAC	21337
AAT	420185		AAT	10886
AAG	1415675		AAG	56328
AA-	273456		AA-	3205
ACA	852624		ACA	33210
ACC	179459		ACC	12122
ACT	99493		ACT	2270
ACG	167810		ACG	5187
AC-	29636		AC-	374
ATA	874547		ATA	21805
ATC	113150		ATC	2871
ATT	220714		ATT	7426
ATG	185789		ATG	4369
	etc	1 st base: human 2 nd base: dog	et	c

3rd base: mouse

Output

- State and segment histograms
- Parameter values
 - Initiation/transition probabilities you were given in the assignment
 - Emission probabilities you calculated from neutral and conserved data sets
- Coordinates of 10 longest conserved segments (report positions relative to the start of the chromosome)
- Brief annotations for the 5 longest conserved segments (look at UCSC genome browser, and make sure using the correct genome version, e.g. hg18)

State Histogram: 1=5 2=3

Segment Histogram:
1=2
2=1

Initial State Probabilities: 1=0.90000 2=0.10000

Transition Probabilities: 1,1=0.99000 1,2=0.01000 2,1=0.20000 2,2=0.80000

Emission Probabilities: 1,A--=0.20000 1,A-A=0.20000 1,A-C=0.20000 1,A-G=0.20000 1,A-T=0.20000 .

. 2,A--=0.10000 2,A-A=0.20000 2,A-C=0.25000 2,A-G=0.25000 2,A-T=0.20000 etc.. Longest Segment List:

116741000 116752000 116745000 116756000 etc.. (give 10 longest from state 2)

Annotations:

Start: 116741000 End: 116752000 Overlaps with exon3 of the protein coding gene cMyc

Start: 116745000 End: 116756000 Overlaps with exon4 of the protein coding gene cMyc

etc.. (give 5 longest)

Questions?