Genome 540 Class 17

Chengxiang Qiu

HW7 questions?

Agenda

- HW8 questions?
- Baum-Welch (forward-backward) algorithm example
- GENSCAN
- HW9 Introduction

A general definition of HMM

$$
\begin{aligned}
& B=\left\{b_{i}\left(v_{k}\right)\right\} \quad 1 \leq i \leq N, 1 \leq k \leq M \sum_{k=1}^{M} b_{i}\left(v_{k}\right)=1 \\
& b_{i}\left(v_{k}\right): \text { prob of "generating " } v_{k} \text { at } s_{i}
\end{aligned}
$$

Forward Algorithm

1. Initialization:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
$$

2. Induction:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
$$

Build a dynamic programming table for these calculations
A
G

	A	C	G
State 1			
State 2			

Forward Algorithm

1. Initialization:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
$$

2. Induction:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
$$

$b_{1}(\mathrm{~A})=0.4$ Build a dynamic programming table for these calculations
A C G

$\alpha_{1}(1)$			
	A	C	G
State 1	0.32		
State 2			

Forward Algorithm

1. Initialization:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
$$

2. Induction:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
$$

Build a dynamic programming table for these calculations

$\alpha_{1}(1)$			
	A	C	G
State 1	0.32		
State 2	0.02		
$\alpha_{1}(2)$			

Forward Algorithm

1. Initialization:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
$$

2. Induction:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
$$

Build a dynamic programming table for these calculations
A $\quad \mathrm{C}^{b_{1}(\mathrm{C})=0.2}$

$\alpha_{1}(1)$			
	A	C	
	G 1$)$		
State 1	0.32	0.0404	
State 2	0.02		
$\alpha_{1}(2)$			

Forward Algorithm

1. Initialization:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \quad 1 \leq i \leq N
$$

2. Induction:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right), \quad 1 \leq t \leq T-1,1 \leq j \leq N .
$$

Build a dynamic programming table for these calculations

	$\alpha_{1}(1)$		$\alpha_{2}(1)$
$\alpha_{3}(1)$			
	A	C	G
State 1	0.32	0.0404	
State 2	0.02	0.069	

$$
\alpha_{1}(2) \quad \alpha_{2}(2) \quad \alpha_{3}(2)
$$

Backward Algorithm

1. Initialization:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

2. Induction:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq t \leq T-1,1 \leq j \leq N
$$

Build a dynamic programming table for these calculations
A C $\quad G_{1}^{b_{1}(G)=0.4}$

Backward Algorithm

1. Initialization:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

2. Induction:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq t \leq T-1,1 \leq j \leq N
$$

Build a dynamic programming table for these calculations
$b_{1}(\mathrm{G})=0.4$

A

Scale

	A	C	G
State 1			
State 2			
	c1	c2	c3

c1
c2

Forward

- Initialization

$$
\begin{aligned}
\ddot{\alpha}_{1}(i) & =\alpha_{1}(i) \\
c_{1} & =\frac{1}{\sum_{i=1}^{N} \ddot{\alpha}_{1}(i)} \\
\hat{\alpha}_{1}(i) & =c_{1} \ddot{\alpha}_{1}(i)
\end{aligned}
$$

- Induction

$$
\begin{aligned}
\ddot{\alpha}_{t}(i) & =\sum_{j=1}^{N} \hat{\alpha}_{t-1}(j) a_{j i} b_{i}\left(O_{t}\right) \\
c_{t} & =\frac{1}{\sum_{i=1}^{N} \ddot{\alpha}_{t}(i)} \\
\hat{\alpha}_{t}(i) & =c_{t} \ddot{\alpha}_{t}(i)
\end{aligned}
$$

$\hat{\alpha}_{t}(i)=\left(\prod_{\tau=1}^{t} c_{\tau}\right) \alpha_{t}(i)$

$$
\mathbf{C}_{t}=\prod_{\tau=1}^{t} c_{\tau}
$$

$$
\log [P(O \mid \lambda)]=-\sum_{t=1}^{T} \log c_{t}
$$

Scale

Backward

- Initialization

$$
\begin{aligned}
& \ddot{\beta}_{T}(i)=1 \\
& \hat{\beta}_{T}(i)=c_{T} \ddot{\beta}_{T}(i)
\end{aligned}
$$

$$
\hat{\beta}_{t}(i)=\left(\prod_{s=t}^{T} c_{s}\right) \beta_{t}(i)=\mathbf{D}_{t} \beta_{t}(i)
$$

- Induction

$$
\begin{aligned}
& \ddot{\beta}_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \hat{\beta}_{t+1}(j) \\
& \hat{\beta}_{t}(i)=c_{t} \ddot{\beta}_{t}(i)
\end{aligned}
$$

Scale

$$
\begin{aligned}
\bar{a}_{i j} & =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
& =\frac{\sum_{t=1}^{T-1} \alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\sum_{t=1}^{T-1} \alpha_{t}(i) \beta_{t}(i)} \\
& =\frac{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) / \mathbf{C}_{t} \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j) / \mathbf{D}_{t+1}}{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) / \mathbf{C}_{t} \cdot \hat{\beta}_{t}(i) / \mathbf{D}_{t}} \\
& =\frac{\left(\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j)\right) / \mathbf{C}_{T}}{\left(\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot \hat{\beta}_{t}(i) / c_{t}\right) / \mathbf{C}_{T}} \\
& =\frac{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot a_{i j} b_{j}\left(O_{t+1}\right) \cdot \hat{\beta}_{t+1}(j)}{\sum_{t=1}^{T-1} \hat{\alpha}_{t}(i) \cdot \hat{\beta}_{t}(i) / c_{t}} .
\end{aligned}
$$

$$
\begin{aligned}
\bar{b}_{j}(k) & =\frac{\sum_{t=1, O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} \\
& =\frac{\sum_{t=1, O_{t}=v_{k}}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}}{\sum_{t=1}^{T} \hat{\alpha}_{t}(j) \cdot \hat{\beta}_{t}(j) / c_{t}} .
\end{aligned}
$$

initial prob

Pi(i) = alpha_hat 1 (i) * beta_hat 1 (i) / c1

$$
\log [P(O \mid \lambda)]=-\sum_{t=1}^{T} \log c_{t}
$$

HW8 tips

- Calculate first few steps by hand and make sure your program matches (exactly!)
- Create other small test cases
- Avoid underflow
- Scale
- Take the logarithm
- Let me know if any questions!

HW9: Evolutionarily conserved segments Due Sunday March-13 11:59pm

- ENCODE region 010 (chromosome 7)
- Multiple alignment of human, dog, and mouse
- 2 states: neutral (fast-evolving), conserved (slowevolving)
- Emitted symbols are multiple alignment columns (e.g. 'AAT')
- Viterbi parse (no iteration)

Input data

```
#·chr7:26924045-26924056
hg18-TGCTCACATTTT
canFam2---CTCACAGTTT
mm9-------CGCTT-
# chr7:26924057-26924120
hg18- CTAGAAGGATTAATGTTCTGTAGATCTATTGATCTTCTACAT
canFam2-TCAGAGGGATTAGTGTTCTGTGGATCTATTGATCTTCTGCAC
mm9-CCAGAGGGAGTGGTGTTCTGTAGATCTATCGACCTTC--CACGCAG
# chr7:26924121-26924289
hg18 - ATCATTAACAATACTTTGTTTTGATTTACTTGCCTGGTGTCT
canFam2-ATCATTAGCAACACTTTGTTCTGATCTACTTGCCTGTCATCC
mm9-------------_ACTTCGCTCTGCTCCACTTGCCTGACATCCAAGG
#·chr7:26924290-26924313
hg18- AATCTAATGTTTAGATTAGGGTTA
canFam2
2-----------------------------
mm9-----------TTAGA--------TA
```


$\mathrm{N}=2$ states
$\mathrm{M}=100$ symbols

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Observation: Alignment	A	T	T	C	A	G	C	A	
	C	T	-	C	A	G	C	A	
	C	G	-	C	A	G	C	A	
									Neutral
									Conserved

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Previous Prob * Transition Prob * Prob Emitting (AAA)

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Observation: Alignment | A | T | T | C | A | G | C | A | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C | T | - | C | A | G | C | A | |
| Neutral | C | G | - | C | A | G | C | A | |
| Conserved | | | | | | | | | |

HMM Diagram

Input

- Original maf format
- Sequences broken into alignment blocks based on the species included
- Official file format specs
- Homework file format
- Only 3 species
- Gaps in human sequence were removed and ambiguous bases replaced with 'A' for simplicity

```
# chrX:152767699-152767743
hg18 ATAAAAACATTAAAAAAAATCAGCCACAGGACTTGGTCTTGGACC
canFam2
mm9
# chrX:152767744-152767853
hg18 CAAGTTAGAGCTAGGCCATGCTTGCTTAAAGGAGTGGCTGTAATTTTAAACAAGGCTAGTGGGAAAGT
canFam2
mm9
```


Setting parameters

- Emission probabilities
- Neutral state: observed frequencies in neutral data set
- Conserved state: observed frequencies in functional data set
- Transition probabilities
- Given in the assignment; more likely to go from conserved to neutral
- Initiation probabilities
- Given in the assignment; more likely to start in the neutral state

Calculating Emission Probabilities

Neutral State: Ancient Repeat Sequences
Conserved State: Putative Functional Sites

AAA	10222095	
AAC	481243	
AAT	420185	
AAG	1415675	
AA-	273456	
ACA	852624	
ACC	179459	
ACT	99493	
ACG	167810	
AC-	29636	1st base: human
ATA	874547	2nd base: dog
ATC	113150	3rd base: mouse
ATT	220714	
ATG	185789	
	etc \ldots	

Output

- State and segment histograms
- Parameter values
- Initiation/transition probabilities you were given in the assignment
- Emission probabilities you calculated from neutral and conserved data sets
- Coordinates of 10 longest conserved segments (report positions relative to the start of the chromosome)
- Brief annotations for the 5 longest conserved segments (look at UCSC genome browser, and make sure using the correct genome version, e.g. hg18)

```
State Histogram:
1=5
2=3
Segment Histogram:
1=2
2=1
```

```
Initial.State Probabilities:
1=0.90000
2=0.10000
Transition Probabilities:
1,1=0.99000
1,2=0.01000
2,1=0.20000
2,2=0.80000
Emission Probabilities:
1,A--=0.20000
1,A-A=0.20000
1,A-C=0.20000
1,A-G=0.20000
1,A-T=0.20000
\bullet
|
'
2,A--=0.10000
2,A-A=0.20000
2,A-C=0.25000
2,A-G=0.25000
2,A-T=0.20000
etc..
```

Questions?

