Genome 540 Class 18

Chengxiang Qiu

 $\alpha_1(1) = \pi_1 \times b_1(A) = 0.8 \times 0.4 = 0.32$

Forward Algorithm

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations A C G

	$\alpha_1(1)$			
	Α	С	G	
State 1	0.32			
State 2				

 $\alpha_1(2) = \pi_2 \times b_2(A) = 0.2 \times 0.1 = 0.02$

Forward Algorithm

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations

Forward Algorithm

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(C) = 0.2$

	$\alpha_1(1)$) α ₂ (1)		
	Α	С	G	
State 1	0.32	0.0404		
State 2	0.02			
	$\alpha_1(2)$)		

 $\alpha_2(1) = [\alpha_1(1) \times a_{11} + \alpha_1(2) \times a_{21}] \times b_1(C)$

= 0.0404

 $= [0.32 \times 0.6 + 0.02 \times 0.5] \times 0.2$

Forward Algorithm

1. Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations

	$\alpha_1(1)$	α ₂ (1)	α ₃ (1)
	Α	С	G
State 1	0.32	0.0404	
State 2	0.02	0.069	

 $\alpha_1(2)$ $\alpha_2(2)$ $\alpha_3(2)$

$$\alpha_2(2) = [\alpha_1(1) \times a_{12} + \alpha_1(2) \times a_{22}] \times b_2(C)$$

= [0.32 × 0.4 + 0.02 × 0.5] × 0.5
= 0.069

Backward Algorithm

1. Initialization:

$$\beta_T(i) = 1, \qquad 1 \le i \le N$$

2. Induction:

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j), \qquad 1 \le t \le T - 1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(G) = 0.4$

٦

	β ₁ (1)	β ₂ (1)	β ₃ (1)	
	Α	С	G	
State 1		0.28	1	
State 2			1	
	β ₁ (2)	β ₂ (2)	β ₃ (2)	

 $\begin{aligned} \beta_2(1) &= \beta_3(1) \times a_{11} \times b_1(G) + \beta_3(2) \times a_{12} \times b_2(G) \\ &= 1 \times 0.6 \times 0.4 + 1 \times 0.4 \times 0.1 \\ &= 0.28 \end{aligned}$

Backward Algorithm

1. Initialization:

$$\beta_T(i) = 1, \qquad 1 \le i \le N$$

2. Induction:

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j), \qquad 1 \le t \le T - 1, 1 \le j \le N.$$

Build a dynamic programming table for these calculations $b_1(G) = 0.4$

٦

	β ₁ (1)	β ₂ (1)	β ₃ (1)
	Α	С	G
State 1		0.28	1
State 2		0.25	1
	β ₁ (2)	β ₂ (2)	β ₃ (2)

 $\begin{aligned} \beta_2(2) &= \beta_3(1) \times a_{21} \times b_1(G) + \beta_3(2) \times a_{22} \times b_2(G) \\ &= 1 \times 0.5 \times 0.4 + 1 \times 0.5 \times 0.1 \\ &= 0.25 \end{aligned}$

HW8 questions?

HMM Start 0.4 06 0.3 Rainy Sunny Transition probs 0.4 0.7 0.6 0.5 0.6 0.1 0.1 0.4 Hidden: 0.3 y_1 *y*₃ y_2 Walk **Emission probs** Shop X_1 X_2 X_3 **Observed:** pron v. n . N $P(y, X) = \prod_{i=1}^{n} P(y_i | y_{i-1}) P(X_i | y_i)$ Joint probability *i*=1 pizza Ι eat Transition probs Emission probs

Clean

Limitations pron v. Transition probs Hidden: *y*₃ y_1 y_2 Ι eat **Emission probs** X_1 X_2 X_3 **Observed:**

Static transition/emission probs

n .

pizza

time

• Limited dependences

Joint probability

$$P(y, X) = \prod_{i=1}^{N} P(y_i | y_{i-1}) P(X_i | y_i)$$

$$f(x_i | y_i)$$
Transition probs Emission probs

Conditional random fields

• Hidden markov model

Generative

Conditional random fields

P(y, X)

P(y|X)

Conditional random fields

A more general frameworks to capture the dependences between hidden states and observed states.

Linear chain CRF

Conditional random fields

2 The CRF Model

Let $x_{1:N}$ be the observations (e.g., words in a document), and $z_{1:N}$ the hidden labels (e.g., tags). A linear chain Conditional Random Field defines a *conditional probability* (whereas HMM defines the joint)

$$p(z_{1:N}|x_{1:N}) = \frac{1}{Z} \exp\left(\sum_{n=1}^{N} \sum_{i=1}^{F} \lambda_i f_i(z_{n-1}, z_n, x_{1:N}, n)\right).$$
(1)

Within the exp() function, we sum over n = 1, ..., N word positions in the sequence. For each position, we sum over i = 1, ..., F weighted features. The scalar λ_i is the weight for feature $f_i()$. The λ_i 's are the parameters of the CRF model, and must be learned, similar to $\theta = \{\pi, \phi, A\}$ in HMMs.

3 Feature Functions

The feature functions are the key components of CRF. In our special case of linear-chain CRF, the general form of a feature function is $f_i(z_{n-1}, z_n, x_{1:N}, n)$, which looks at a pair of adjacent states z_{n-1}, z_n , the whole input sequence $x_{1:N}$, and where we are in the sequence. The feature functions produce a real value.

For example, we can define a simple feature function which produces binary values: it is 1 if the current word is John, and if the current state z_n is PERSON:

$$f_1(z_{n-1}, z_n, x_{1:N}, n) = \begin{cases} 1 & \text{if } z_n = \text{PERSON and } x_n = \text{John} \\ 0 & \text{otherwise} \end{cases}$$
(3)

https://pages.cs.wisc.edu/~jerryzhu/cs769/CRF.pdf