Genome 540 Class 20

Chengxiang Qiu

HW8 questions?

HW9: Evolutionarily conserved segments Due Sunday March-13 11:59pm

- ENCODE region 010 (chromosome 7)
- Multiple alignment of human, dog, and mouse
- 2 states: neutral (fast-evolving), conserved (slowevolving)
- Emitted symbols are multiple alignment columns (e.g. 'AAT')
- Viterbi parse (no iteration)

Input data

```
#·chr7:26924045-26924056
hg18-TGCTCACATTTT
canFam2---CTCACAGTTT
mm9-------CGCTT-
# chr7:26924057-26924120
hg18- CTAGAAGGATTAATGTTCTGTAGATCTATTGATCTTCTACAT
canFam2-TCAGAGGGATTAGTGTTCTGTGGATCTATTGATCTTCTGCAC
mm9-CCAGAGGGAGTGGTGTTCTGTAGATCTATCGACCTTC--CACGCAG
# chr7:26924121-26924289
hg18 - ATCATTAACAATACTTTGTTTTGATTTACTTGCCTGGTGTCT
canFam2-ATCATTAGCAACACTTTGTTCTGATCTACTTGCCTGTCATCC
mm9-------------_ACTTCGCTCTGCTCCACTTGCCTGACATCCAAGG
#·chr7:26924290-26924313
hg18- AATCTAATGTTTAGATTAGGGTTA
canFam2
2-----------------------------
mm9-----------TTAGA--------TA
```


$\mathrm{N}=2$ states
$\mathrm{M}=100$ symbols

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Observation: Alignment	A	T	T	C	A	G	C	A	
	C	T	-	C	A	G	C	A	
	C	G	-	C	A	G	C	A	
									Neutral
									Conserved

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Previous Prob * Transition Prob * Prob Emitting (AAA)

Finding the most likely series of hidden states (Viterbi Path)

- Step 1: given an observed alignment, determine the most probable series of states
- This depends on the specified probabilities:
- Initiation
- Transition
- Emission
- Process nodes in a sliding window

Observation: Alignment | A | T | T | C | A | G | C | A | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C | T | - | C | A | G | C | A | |
| Neutral | C | G | - | C | A | G | C | A | |
| Conserved | | | | | | | | | |

HMM Diagram

Input

- Original maf format
- Sequences broken into alignment blocks based on the species included
- Official file format specs
- Homework file format
- Only 3 species
- Gaps in human sequence were removed and ambiguous bases replaced with 'A' for simplicity

```
# chrX:152767699-152767743
hg18 ATAAAAACATTAAAAAAAATCAGCCACAGGACTTGGTCTTGGACC
canFam2
mm9
# chrX:152767744-152767853
hg18 CAAGTTAGAGCTAGGCCATGCTTGCTTAAAGGAGTGGCTGTAATTTTAAACAAGGCTAGTGGGAAAGT
canFam2
mm9
```


Setting parameters

- Emission probabilities
- Neutral state: observed frequencies in neutral data set
- Conserved state: observed frequencies in functional data set
- Transition probabilities
- Given in the assignment; more likely to go from conserved to neutral
- Initiation probabilities
- Given in the assignment; more likely to start in the neutral state

Calculating Emission Probabilities

Neutral State: Ancient Repeat Sequences
Conserved State: Putative Functional Sites

AAA	10222095	
AAC	481243	
AAT	420185	
AAG	1415675	
AA-	273456	
ACA	852624	
ACC	179459	
ACT	99493	
ACG	167810	
AC-	29636	1st base: human
ATA	874547	2nd base: dog
ATC	113150	3rd base: mouse
ATT	220714	
ATG	185789	
	etc \ldots	

Output

- State and segment histograms
- Parameter values
- Initiation/transition probabilities you were given in the assignment
- Emission probabilities you calculated from neutral and conserved data sets
- Coordinates of 10 longest conserved segments (report positions relative to the start of the chromosome)
- Brief annotations for the 5 longest conserved segments (look at UCSC genome browser, and make sure using the correct genome version, e.g. hg18)

```
State Histogram:
1=5
2=3
Segment Histogram:
1=2
2=1
```

```
Initial.State Probabilities:
1=0.90000
2=0.10000
Transition Probabilities:
1,1=0.99000
1,2=0.01000
2,1=0.20000
2,2=0.80000
Emission Probabilities:
1,A--=0.20000
1,A-A=0.20000
1,A-C=0.20000
1,A-G=0.20000
1,A-T=0.20000
\bullet
|
'
2,A--=0.10000
2,A-A=0.20000
2,A-C=0.25000
2,A-G=0.25000
2,A-T=0.20000
etc..
```

Questions?

Gene detection: GENSCAN

- Algorithm is based on probabilistic model of gene structure similar to Hidden Markov Models (HMMs).
- GENSCAN uses a training set in order to estimate the HMM parameters, then the algorithm returns the exon structure using maximum likelihood approach standard to many HMM algorithms (Viterbi algorithm).
- Biological input: Codon bias in coding regions, gene structure (start and stop codons, typical exon and intron length, presence of promoters, presence of genes on both strands, etc)
- Covers cases where input sequence contains no gene, partial gene, complete gene, multiple genes.

GenScan States

- N - intergenic region
- P - promoter
- F - 5' untranslated region
- $\mathrm{E}_{\text {sngl }}$ - single exon (intronless) (translation start -> stop codon)
- $\mathrm{E}_{\text {init }}$ - initial exon (translation start -> donorsplice site)
- $\mathrm{E}_{\mathrm{k}}-$ phase k internal exon (acceptor splice site -> donor splice site)
- $\mathrm{E}_{\text {term }}$ - terminal exon (acceptor splice site -> stop codon)
- I_{k} - phase k intron: 0 - between codons; 1 - after the first base of a codon; 2 -after the second base of a codon

