Genome 540 Class 20

Chengxiang Qiu

HW8 questions?

HW9: Evolutionarily conserved segments Due Sunday March-13 11:59pm

- ENCODE region 010 (chromosome 7)
- Multiple alignment of human, dog, and mouse
- 2 states: neutral (fast-evolving), conserved (slow-evolving)
- Emitted symbols are multiple alignment columns (e.g. 'AAT')
- Viterbi parse (no iteration)

Input data

```
# chr7:26924045-26924056
hg18——TGCTCACATTTT
canFam2---CTCACAGTTT
mm9----CGCTT-
# chr7:26924057-26924120
       -CTAGAAGGATTAATGTTCTGTAGATCTATTGATCTTCTACAT
canFam2-TCAGAGGGATTAGTGTTCTGTGGATCTATTGATCTTCTGCAC
mm9-CCAGAGGGAGTGGTGTTCTGTAGATCTATCGACCTTC--CACGCAG
# chr7:26924121-26924289
canFam2-ATCATTAGCAACACTTTGTTCTGATCTACTTGCCTGTCATCC
mm9----ACTTCGCTCTGCTCCACTTGCCTGACATCCAAGG
# chr7:26924290-26924313
      -\!\!-\!\!AATCTAATGTTTAGATTAGGGTTA
canFam2-----
mm9----TAGA---TA
```


 $B = \{b_i(v_k)\} \qquad 1 \le i \le N, 1 \le k \le M \quad \sum_{k=1}^{M} b_i(v_k) = 1$ $b_i(v_k) : prob \ of \ "generating "v_k \ at \ s_i$

N = 2 states M = 100 symbols

- Step 1: given an observed alignment, determine the most probable series of states
 - This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - Process nodes in a sliding window

- Step 1: given an observed alignment, determine the most probable series of states
 - This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - Process nodes in a sliding window

- Step 1: given an observed alignment, determine the most probable series of states
 - This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - Process nodes in a sliding window

Previous Prob * Transition Prob * Prob Emitting (TTG)

Observation: Alignment A T T C A G C A

C T - C A G C A

C G - C A G C A

N

Neutral

Conserved

- Step 1: given an observed alignment, determine the most probable series of states
 - This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - Process nodes in a sliding window

Previous Prob * Transition Prob * Prob Emitting (AAA)

- Step 1: given an observed alignment, determine the most probable series of states
 - This depends on the specified probabilities:
 - Initiation
 - Transition
 - Emission
 - Process nodes in a sliding window

HMM Diagram

Input

- Original maf format
 - Sequences broken into alignment blocks based on the species included
 - Official file format specs
- Homework file format
 - Only 3 species
 - Gaps in human sequence were removed and ambiguous bases replaced with 'A' for simplicity

Setting parameters

- Emission probabilities
 - Neutral state: observed frequencies in neutral data set
 - Conserved state: observed frequencies in functional data set
- Transition probabilities
 - Given in the assignment; more likely to go from conserved to neutral
- Initiation probabilities
 - Given in the assignment; more likely to start in the neutral state

Calculating Emission Probabilities

Neutral State: Ancient Repeat Sequences

AAA	10222095
AAC	481243
AAT	420185
AAG	1415675
AA-	273456
ACA	852624
ACC	179459
ACT	99493
ACG	167810
AC-	29636
ATA	874547
ATC	113150
ATT	220714
ATG	185789

etc ...

1st base: human 2nd base: dog

3rd base: mouse

Conserved State: Putative Functional Sites

AAA		2375583
AAC		21337
AAT		10886
AAG		56328
AA-		3205
ACA		33210
ACC		12122
ACT		2270
ACG		5187
AC-		374
ATA		21805
ATC		2871
ATT		7426
ATG		4369
	etc	

Output

- State and segment histograms
- Parameter values
 - Initiation/transition probabilities you were given in the assignment
 - Emission probabilities you calculated from neutral and conserved data sets
- Coordinates of 10 longest conserved segments (report positions relative to the start of the chromosome)
- Brief annotations for the 5 longest conserved segments (look at UCSC genome browser, and make sure using the correct genome version, e.g. hg18)

```
State Histogram:
1=5
2=3

Segment Histogram:
1=2
2=1

Transition Probabilation Probability Probability Probability Probability P
```

```
Initial State Probabilities:
Transition Probabilities:
Emission Probabilities:
1,A--=0.20000
1,A-A=0.20000
1,A-C=0.20000
1,A-G=0.20000
1,A-T=0.20000
2,A--=0.10000
2,A-A=0.20000
2,A-C=0.25000
2,A-G=0.25000
2,A-T=0.20000
etc..
```

```
Longest Segment List:
116741000 116752000
116745000 116756000
etc.. (give 10 longest from state 2)
Annotations:
Start: 116741000
End: 116752000
Overlaps with exon3 of the protein coding gene cMyc
Start: 116745000
End: 116756000
Overlaps with exon4 of the protein coding gene cMyc
etc.. (give 5 longest)
```

Questions?

Gene detection: GENSCAN

- Algorithm is based on probabilistic model of gene structure similar to Hidden Markov Models (HMMs).
- GENSCAN uses a training set in order to estimate the HMM parameters, then the algorithm returns the exon structure using maximum likelihood approach standard to many HMM algorithms (Viterbi algorithm).
 - Biological input: Codon bias in coding regions, gene structure (start and stop codons, typical exon and intron length, presence of promoters, presence of genes on both strands, etc)
 - Covers cases where input sequence contains no gene, partial gene, complete gene, multiple genes.

GENSCAN HMM Architecture

