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HW3 feedbacks Please at least go through the discussion slides 

before you start doing the homework.

111275 1 12.2057
120297 0 12.2057
122310 1 10.0736
122613 1 11.7212
124361 0 12.2057
128239 1 12.2057

Postion list



HW4 - Find a highest-weight path in a weighted directed acyclic graph

1) Arranging vertices by depth 2) dynamic programing

Depth n

Depth n+1

X1 X2 X3

Y1
Y2

Y3

max(0, max(x1+y1, x2+y2, x3+y3))

3) “Constrained”

For example, requiring the path start at node v1



Other DAG Algorithms

• Every edge has the same weight 


• The shortest path from A to any 
nodes (e.g. F)?



Other DAG Algorithms

Minimum-weight path on a DAG
• Similar to the homework


• Looking for the minimum instead of the maximum


• If there are no negative weights, then the shortest 
path is technically weight 0 (single node)


• Otherwise, update vertex weights in depth order 
as normal
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What if graph has cycles?
• More difficult (can’t order nodes by depth)


• From a given start vertex, the shortest path to each 
vertex



What if graph has cycles?
• More difficult (can’t order nodes by depth)


• Bellman-Ford algorithm (for given start vertex)

• Choose source node and set distance to 0

• Set distance to all other nodes to infinity

• For each edge (u,v), if v’s distance can be reduced by taking 

that edge, update v’s distance

• Cycle through all edges in this way |V|-1 times

• (can also check for negative-weight cycle with one extra 

iteration)

Tutorial and dynamic programming implementation here.

https://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/
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Negative-weight cycle

• Question 2: if it’s an “unconstrained” question (we are not starting from A), what’s the shortest path?

• Question 1: what’s the time complexity?



What if graph has cycles? (no negative edges)

• Dijkstra’s algorithm (for given start vertex)

• Choose source node and set distance to 0

• Set distance to all other nodes to infinity

• Set source node to current

• Make distance offers to all unvisited neighbors, which are 

accepted if they’re less than the previous best offer

• Mark current as visited (it will never be updated again)

• Select unvisited neighbor with smallest distance, set it to 

current, and repeat

• (When destination node has been marked visited,    stop)

1)Taking less time;  
2)only working on graph with no negative edges

https://brilliant.org/wiki/dijkstras-short-path-finder/
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