Week 5 Discussion Section Genome 540

Chengxiang Qiu

HW3 feedbacks

complement(13746..13800)

Read the sequence from 1 to N

Postion list

111275	1
12.2057	
120297	0
12.2057	
122310	1

HW4 - Find a highest-weight path in a weighted directed acyclic graph

1) Arranging vertices by depth
2) dynamic programing

$$
w(v)=\max \left(0, \max _{u \in \operatorname{parents}(v)}(w(u)+w((u, v)))\right)
$$

$$
\max (0, \max (x 1+y 1, x 2+y 2, x 3+y 3))
$$

3) "Constrained"

For example, requiring the path start at node v1

Other DAG Algorithms

- Every edge has the same weight
- The shortest path from A to any nodes (e.g. F)?

Other DAG Algorithms

Minimum-weight path on a DAG

- Similar to the homework
- Looking for the minimum instead of the maximum
- If there are no negative weights, then the shortest path is technically weight 0 (single node)
- Otherwise, update vertex weights in depth order as normal

$$
w(v)=\min \left(0, \min _{u \in \operatorname{parents}(v)}(w(u)+w((u, v)))\right)
$$

What if graph has cycles?

- More difficult (can't order nodes by depth)
- From a given start vertex, the shortest path to each vertex

What if graph has cycles?

- More difficult (can't order nodes by depth)
- Bellman-Ford algorithm (for given start vertex)

- Choose source node and set distance to 0
- Set distance to all other nodes to infinity
- For each edge (u, v), if v's distance can be reduced by taking that edge, update v's distance
- Cycle through all edges in this way |V|-1 times
- (can also check for negative-weight cycle with one extra iteration)

function BellmanFord(list vertices, list edges, vertex source) is
// This implementation takes in a graph, represented as
// lists of vertices (represented as integers [0..n-1]) and edges,
// and fills two arrays (distance and predecessor) holding
// the shortest path from the source to each vertex
distance := list of size n
predecessor := list of size n
// Step 1: initialize graph
for each vertex v in vertices do

[v]:= inf

predecessor[v] := null
distance[source] := 0
// Initialize the distance to all vertices to infinity // And having a null predecessor
// The distance from the source to itself is, of course, zero
// Step 2: relax edges repeatedly
repeat $|V|-1$ times:
for each edge (u, v) with weight w in edges do if distance[u] +w < distance[v] then
distance[v] := distance[u] + w
predecessor[v] := u
// Step 3: check for negative-weight cycles
for each edge (u, v) with weight w in edges do
if distance $[u]+w<$ distance[v] then
error "Graph contains a negative-weight cycle"
return distance, predecessor

- Question 1: what's the time complexity?
- Question 2: if it's an "unconstrained" question (we are not starting from A), what's the shortest path?

What if graph has cycles? (no negative edges)

- Dijkstra's algorithm (for given start vertex)
- Choose source node and set distance to 0
- Set distance to all other nodes to infinity
- Set source node to current
- Make distance offers to all unvisited neighbors, which are accepted if they're less than the previous best offer
- Mark current as visited (it will never be updated again)
- Select unvisited neighbor with smallest distance, set it to current, and repeat
- (When destination node has been marked visited, stop)

1) Taking less time;
2) only working on graph with no negative edges

Current: \{\}

Visited: \{\}
Unvisited: $\{0,1,2,3,4,5,6,7,8\}$

Current: $\{0\}$

Visited: \{\}
Unvisited: $\{1,2,3,4,5,6,7,8\} \quad 4$

Current: \{1\}

Visited: $\{0\}$
Unvisited: $\{2,3,4,5,6,7,8\}$

Current: $\{7\}$

Visited: $\{0,1\}$
Unvisited: $\{2,3,4,5,6,8\}$

Current: $\{6\}$

Visited: $\{0,1,7\}$
Unvisited: $\{2,3,4,5,8\}$

Current: $\{5\}$

Visited: $\{0,1,7,6\}$
Unvisited: $\{2,3,4,8\}$

Current: \{2\}

Visited: $\{0,1,7,6,5\}$
Unvisited: $\{3,4,8\}$

Current: $\{8\}$

Visited: $\{0,1,7,6,5,2\}$ Unvisited: $\{3,4\}$

Current: $\{3\}$

Visited: $\{0,1,7,6,5,2,8\}$ Unvisited: \{4\}

Current: $\{4\}$

Visited: $\{0,1,7,6,5,2,8,3\}$ Unvisited: $\}$

