Week 5 Discussion Section
Genome 540

Chengxiang Qiu

Please at least go through the discussion slides
HW3 feEd ba CkS before you start doing the homework.

complement(13746..13800)

Read the sequence from 1 to N Postion list

>

111275]1(12.2057

1

13746 13800 120297|0/12.2057
Forward 122310(1/10.0736
1
0
1

122613(1/11.7212

124361(0(12.2057
128239(1(12.2057

Reverse 13790 13810

<

21 bps

HWA4 - Find a highest-weight path in a weighted directed acyclic graph

1) Arranging vertices by depth 2) dynamic programing
w(v)=max(0, max (w(u)+w((u,v))))
u € parents(v)
X1 X2 X3
Depth n o ® o
Y2
Y1 Y3
Depth n+1 ®

max(0, max(x1+yl, x2+y2, x3+y3))

3) “Constrained”
For example, requiring the path start at node v1

Other DAG Algorithms

@_} B G » Every edge has the same weight

e The shortest path from A to any

@/' G nodes (e.g. F)?

Other DAG Algorithms
Minimum-weight path on a DAG

@ e Similar to the homework
Yl
@:iq B’ e Looking for the minimum instead of the maximum
[b | es o |If there are no negative weights, then the shortest
-, C\D\ 6. path is technically weight O (single node)
3
Q ;GD . Otherwise, update vertex weights in depth order
SR as normal

vii w() = min (0, ™MF

€ parenis

(w(u) + w((w,v))))

What if graph has cycles?

e More difficult (can’t order nodes by depth)

e From a given start vertex, the shortest path to each
vertex

What if graph has cycles?

e More difficult (can’t order nodes by depth)

e Bellman-Ford algorithm (for given start vertex)

e Choose source node and set distanceto O l
« Set distance to all other nodes to infinity

» For each edge (u,v), if v's distance can be reduced by taking
that edge, update v’s distance

e Cycle through all edges in this way |V|-1 times

» (can also check for negative-weight cycle with one extra
iteration)

0

Tutorial and dynamic programming implementation here.

https://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/

AB: -1
AC: 4

B: -1 BC: 3
C:4 BE: 2 :
BD: 2 D:1 DC: 5

function BellmanFord(list vertices, list edges, vertex source) is

// This implementation takes in a graph, represented as

// lists of vertices (represented as integers [0..n-1]) and edges,
// and fills two arrays (distance and predecessor) holding

// the shortest path from the source to each vertex

distance := list of size n
predecessor := list of size n

// Step 1: initialize graph
for each vertex v in vertices do

distancel[v] := inf // Initialize the distance to all vertices to infinity
predecessor[v] := null // And having a null predecessor
distance[source] := 0 // The distance from the source to itself is, of course, zero

// Step 2: relax edges repeatedly

repeat |V|-1 times:
for each edge (u, v) with weight w in edges do
if distance[u]l + w < distance[v] then
distance[v] := distancelu] + w
predecessor[v] := u

// Step 3: check for negative-weight cycles
for each edge (u, v) with weight w in edges do
if distancel[u] + w < distance[v] then
error "Graph contains a negative-weight cycle"

return distance, predecessor

Negative-weight cycle

e« Question 1: what’s the time complexity?

e Question 2:if it’s an “unconstrained” question (we are not starting from A), what’s the shortest path?

What if graph has cycles? (no negative edges)

e Dijkstra’s algorithm (for given start vertex)

e Choose source node and set distanceto O
» Set distance to all other nodes to infinity
e Set source node to current

 Make distance offers to all unvisited neighbors, which are
accepted if they're less than the previous best offer

« Mark current as visited (it will never be updated again)

» Select unvisited neighbor with smallest distance, set it to
current, and repeat

 (When destination node has been marked visited, stop)

1) Taking less time;
2) only working on graph with no negative edges

https://brilliant.org/wiki/dijkstras-short-path-finder/

Current: {}
Visited: {}

Unvisited: {0,1,2,3,4,5,6,7,8}
O O O

OO CO CO

Current: {0}
Visited: {}

Unvisited: {1,2,3,4,5,6,7,8} 4 OO
CO

3 9 =

Current: {1}
Visited: {0}

Unvisited: {2,3,4,5,6,7,8) 4 12 00

4

Current: {7}
Visited: {0,1}

Unvisited: {2,3,4,5,6,8) | 12 00

4

Current: {6}
Visited: {0,1,7}

Unvisited: {2,3,4,5,8} 4 12 CO

Current: {5}
Visited: {0,1,7,6}
Unvisited: {2,3,4,8}

Current: {2}
Visited: {0,1,7,6,5}
Unvisited: {3,4,8}

Current: {8}
Visited: {0,1,7,6,5,2}

Unvisited: {3,4} 4 1 2 19

Current: {3}
Visited: {0,1,7,6,5,2,8}

Unvisited: {4} 4 12 19

Current: {4}
Visited: {0,1,7,6,5,2,8,3}

Unvisited: {} 4 12 19

