
Week 5 Discussion Section 
Genome 540

Chengxiang Qiu

HW3 feedbacks Please at least go through the discussion slides

before you start doing the homework.

111275 1 12.2057
120297 0 12.2057
122310 1 10.0736
122613 1 11.7212
124361 0 12.2057
128239 1 12.2057

Postion list

HW4 - Find a highest-weight path in a weighted directed acyclic graph

1) Arranging vertices by depth 2) dynamic programing

Depth n

Depth n+1

X1 X2 X3

Y1
Y2

Y3

max(0, max(x1+y1, x2+y2, x3+y3))

3) “Constrained”

For example, requiring the path start at node v1

Other DAG Algorithms

• Every edge has the same weight

• The shortest path from A to any
nodes (e.g. F)?

Other DAG Algorithms

Minimum-weight path on a DAG
• Similar to the homework

• Looking for the minimum instead of the maximum

• If there are no negative weights, then the shortest
path is technically weight 0 (single node)

• Otherwise, update vertex weights in depth order
as normal

i

ii iii

iv

viv

vii

B, 5

G, -3

I, 4

E, -3

C, -2

A, -1

D,4

H, -5

J, -3

L, -3K, 1

F, 2

min min

What if graph has cycles?
• More difficult (can’t order nodes by depth)

• From a given start vertex, the shortest path to each
vertex

What if graph has cycles?
• More difficult (can’t order nodes by depth)

• Bellman-Ford algorithm (for given start vertex)

• Choose source node and set distance to 0

• Set distance to all other nodes to infinity

• For each edge (u,v), if v’s distance can be reduced by taking

that edge, update v’s distance

• Cycle through all edges in this way |V|-1 times

• (can also check for negative-weight cycle with one extra

iteration)

Tutorial and dynamic programming implementation here.

https://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/

AB: -1

AC: 4

B: -1

C: 4

-1

4

BC: 3

BE: 2

BD: 2

C: 2

E: 1

D: 1

-1

2 1

1

ED: -3

DB: 1

DC: 5

D: -2

-1

2 -2

1

-1

2 -2

1

-1

2 -2

1-2

Negative-weight cycle

• Question 2: if it’s an “unconstrained” question (we are not starting from A), what’s the shortest path?

• Question 1: what’s the time complexity?

What if graph has cycles? (no negative edges)

• Dijkstra’s algorithm (for given start vertex)

• Choose source node and set distance to 0

• Set distance to all other nodes to infinity

• Set source node to current

• Make distance offers to all unvisited neighbors, which are

accepted if they’re less than the previous best offer

• Mark current as visited (it will never be updated again)

• Select unvisited neighbor with smallest distance, set it to

current, and repeat

• (When destination node has been marked visited, stop)

1)Taking less time;
2)only working on graph with no negative edges

https://brilliant.org/wiki/dijkstras-short-path-finder/

0

Current: {}

Visited: {}

Unvisited: {0,1,2,3,4,5,6,7,8}

0

4

8

Current: {0}

Visited: {}

Unvisited: {1,2,3,4,5,6,7,8}

0

4

8

12

Current: {1}

Visited: {0}

Unvisited: {2,3,4,5,6,7,8}

0

4

8

12

15

9

Current: {7}

Visited: {0,1}

Unvisited: {2,3,4,5,6,8}

0

4

8

12

15

9 11

Current: {6}

Visited: {0,1,7}

Unvisited: {2,3,4,5,8}

0

4

8

12

15

9 11

21

25

Current: {5}

Visited: {0,1,7,6}

Unvisited: {2,3,4,8}

0

4

8

12

15

9 11

21

25

14

19

Current: {2}

Visited: {0,1,7,6,5}

Unvisited: {3,4,8}

0

4

8

12

15

9 11

21

25

14

19

Current: {8}

Visited: {0,1,7,6,5,2}

Unvisited: {3,4}

0

4

8

12

15

9 11

21

25

14

19

Current: {3}

Visited: {0,1,7,6,5,2,8}

Unvisited: {4}

0

4

8

12

15

9 11

21

25

14

19

Current: {4}

Visited: {0,1,7,6,5,2,8,3}

Unvisited: {}

0

4

8

12

15

9 11

21

25

14

19

