
1

Genome 540  
Discussion Section Week 1

Jan 4, 2021

Chengxiang (CX) Qiu

2

Agenda (Tu/Th)
• Introductions

• C++/general programming tips

• HW1 context/advice/questions

• Input on future topics

3

Introductions
• Who am I?

• 4th year Genome Sciences

student

• Shendure Lab

• Single-cell genomics

• Mouse embryogenesis

• Python/R

• Who are you?

• Department

• Programming experience

4

Programming style
• The more readable your code is

• The more I’ll be able to help you if something’s wrong

• The more useful it will be to you later

• Try to use Github (version control and easy sharing)

5

Programming style
• Tips for readability

• Intuitive variable/function names, (a, b, c vs. seq_name, seq_length)

• Comments

• Outlining general structure of program/key points of implemented algorithm

• Clarifying any tricky/unintuitive lines of code

• Simplicity over performance optimization (until it becomes necessary)

• Write more functions

• Write less “for” loops

General tips for homework
• C/C++ or Java for some homework are necessary

• Python works for most homework

• R and MATLAB are not suitable

6

General tips for homework
• It is important to understand biological questions

• “Gap” between understanding the algorithm and writing it out

• Your program might work on the test data but not work on the

real data (much bigger and some unexpected issues)

7

General tips for homework
• Print intermediate output

• It’s not necessary to write every basic function (for example,

sort)

• Please make an effort to match the template!

8

For a given DNA sequence

The longest match substring?

Substring?

Longest match substring?

In assignment 1, you need to compare two DNA sequences

TTTTTATTATTAACCATGATAATTGTTGATAAATCTGTGGATAACTCTAAAAAAATTCCGGATTTATAAA

AGTACATTAAAATATTTATATTTTAATGTAAATATTATATCACTTTTTCACAAAAACGTGTATTATATAT

and

•What’s the longest match substring between them?

•Sequence 1 + Sequence 2 = A new Sequence

•Only comparing “substring” from different sequences

•Remember to consider both strands for sequence 2

5 - AGTACATTA - 3

3 - TCATGTAAT - 5

Forward

Reverse
5 - TAATGTACT - 3

5 - AGTACATTA - 3

•Do not store the substrings! (the real data is 10 Mb)

Difference between Python and C/C++

Python

• “interpreted”

• dynamic-typed

• data type is not required while declaring variable

C/C++

• “compiled”

• statically typed

• data type is required while declaring variable

• debugging is challenging

A = 5

B = “x”

C = [‘x’, ‘y’, ‘z’]

int A = 5;

char B = ‘x’;

char C[3] = {‘x’, ‘y’, ‘z’};

13

Dynamic arrays in C++ (Vectors)
#include <iostream>

#include <fstream>

#include <sstream>

#include <vector> // must have this in order to use vector

#include <algorithm>

using namespace std;

int main(int argc, char* argv[]){

 vector<string> vec; // make an empty vector that will be made up of strings

 vec.push_back("ZABC"); // adds “ZABC” to the vector, can be accesses with strings[0]

 vec.push_back("DEF"); // adds ”DEF”

 for(auto x : vec){

 cout << x << endl;

 }

 vec.clear(); // empty the vec of all elements

 // documentation http://www.cplusplus.com/reference/vector/vector/

}

http://www.cplusplus.com/reference/vector/vector/

14

Custom data types in C++ (Structs)
struct complex{

	 int real;

	 int img;

};

int main(int argc, char* argv[]){

	 complex a = { 10 , 1} ;

	 cout << “Real: ” << a.real << “ Img: ” << a.img << endl;

	 complex * p = &a;

	 cout << “Real: ” << p->real << “ Img: ” << p->img << endl;

}

15

Pointers in C++
• Pointers are memory addresses, which point to variables

• There are two operators essential for handling pointers and
memory addresses in C/C++: `*` and `&`

16

* as a suffix to a type is a “pointer”

char* p; // p is a memory location that stores a “char”

17

& as a unary prefix is the address-of operator and obtains the
memory address of a variable 

char x = ‘h’;

char* p = &x;

18

& as a suffix to a type means “pass by
reference”

19

* as a unary prefix means content of that
memory location

Difference between pointer to an array
and array of pointers

• Pointer to an array - we are using the pointer to access the components of the array

// pointer to an array of five numbers;

int (*ptr)[5];

• Array of pointers is an array of the pointer variables

// declaration of an array of pointers;

int *ptr[5];

•The longest match substring?

•What is substring?

•What is longest match substring?

For a given DNA sequence

Dynamic memory

Arrays point to blocks of memory
• Arrays are just pointers to continuous blocks of memory

• Array indices are just pointer arithmetic and dereferencing combined
• a[12] is the same as *(a + 12)
• &a[3] is the same as a + 3

• Large arrays should be dynamically allocated (on the heap)
• Make sure you delete them

const char *word =
“hi”;

‘h’

0x80 0x88

‘i’

0x90

‘\0’

word[0] word[1] word[2]

word word+1 word+2

int n = some_large_number;
double * d = new double[n];

char word[6]; // an array of 6
characters called word
word[0] = ‘a’;

22

Sorting in C++ with sort
#include <iostream>

#include <fstream>

#include <sstream>

#include <vector>

#include <algorithm> // must have this in order to use sort

using namespace std;

bool my_cmp(const string & a, const string & b){

 return(a < b);

}

int main(int argc, char* argv[]){

 vector<string> vec;

 vec.push_back("ZABC");

 vec.push_back("DEF");

 sort(vec.begin(), vec.end(), my_cmp);

 for(auto x : vec){

 cout << x << endl;

 }

}

23

Other sorting options in C++

http://www.cplusplus.com/reference/

24

Other sorting options in C++

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

25

Homework 1
• Program a suffix array

• Test it on the files provided and compare results to the test

output

• Run your program on the orthologous 10-megabase regions in

the human and mouse genomes.

• Use the UCSC genome browser (hg38 and mm10) to figure out

what biological feature they (the longest match) correspond to

• Submit your program output and your code

27

HW1 tips
• Start with pseudocode

• Start writing and then improve the details

• Don’t hesitate, C++ is much faster than Python (at least for

HW1)

• Get comfortable with pointers

• Output to template directly, also please make an effort to match

the template

Example of reading in a file in C++
(and a few other things)

28

Example of reading in a file in C++
(and a few other things)

29

If you are using Mac

(under macOS12.1, my experience):

potentially you need to install Xcode,

and use clang++ instead of g++

30

Topics for future discussion sections?
• Scalable and reproducible bioinformatics pipelines (Snakemake)

• General programming tips

• Specific languages: Python, C++, Unix tools

• Additional applications of HMMs

• Dynamic programming

• Machine learning

• Version Control/Github

• Jupyter Notebooks/Reproducibility

