
Genome 540 Discussion

Conor Camplisson

January 5th, 2023

Outline

• Homework #1 Overview

• C++ Programming Tips

Outline

• Homework #1 Overview

• C++ Programming Tips

4

Homework #1

Suffix trees

• Applications:
• Finding longest-repeated substring

• Finding all repetitions in a string

• Computing substring statistics

• Approximate string matching

• Compression

• Genetic sequence analysis

• https://www.youtube.com/watch?v=hLsrPsFHPcQ&t=1s

3 1

5

A NA

NANA $

BANANA$

4 2

0

NA$$

5

https://www.youtube.com/watch?v=hLsrPsFHPcQ&t=1s

Suffix arrays

• Substantially more space-efficient

• Search times comparable

• Greater upfront build time

• “A primary motivation for this paper was to be able to efficiently answer on-line
string queries for very long genetic sequences (on the order of one million or
more symbols long). In practice, it is the space overhead of the query data
structure that limits the largest text that may be handled.”

• Fancier implementations than yours take advantage of the fact that you’re not
sorting arbitrary strings, and that suffix trees can be built more quickly

6

7

Yahoo!, Amazon, Google, YouTube,

NIH

8

One of the creators of BLAST

(1990),

Shotgun sequence assembly

Yahoo!, Amazon, Google, YouTube,

NIH

9

10

• Efficiency
• < 1 min, < 200 MB RAM

• C++ ops to avoid:
• += (for long strings – e.g. reading files)

• push_back

• strlen on suffices

• FASTA file sequence lines may have:
• White space, digits

• Mixed case

• N’s / other ambiguity codes
• long N tracts are problem for suffix arrays!

11

Some HW1 issues

HW1 tips

• Start with pseudocode/python

• Get comfortable with pointers

• Think about how to store inputs

• Think about how to store results

• Output to template directly

12

Outline

• Homework #1 Overview

• C++ Programming Tips

13

14

Pointers: conceptual introduction

5 houses 5 pointers to houses

Pointers in C++

• Pointers are memory addresses, which point to variables

• There are two operators essential for handling pointers and memory
addresses in C/C++: `*` and `&`

• Unfortunately, both operators can be used in two ways which often
leads to confusion.

15

* as a suffix to a type is a “pointer”

char * p; // p is a memory location that stores a “char”

16

& as a unary prefix is the address-of operator and
obtains the memory address of a variable

char x = ‘h’;

char * p = &x;

17

* as a unary prefix means content of that
memory location

char y = ‘a’;

char* p = &y; // p points to the memory location of y

char x = *p ; // *p is the object that p points to (i.e. ‘a’)

18

& as a suffix to a type means “pass by
reference”

// pass by reference

void my_func(int &a){

a = 5;

}

int main(int argc, char* argv[]){

int a = 0;

my_func(a);

cout << a << endl;

}

19

Arrays point to blocks of memory

• Arrays are just pointers to continuous blocks of memory

• Array indices are just pointer arithmetic and dereferencing
combined

• a[12] is the same as *(a + 12)
• &a[3] is the same as a + 3

• Large arrays should be dynamically allocated (on the heap)
• Make sure you delete them

const char *word = “hi”;

‘h’

0x80 0x88

‘i’

0x90

‘\0’

word[0] word[1] word[2]

word word+1 word+2

int n = some_large_number;
double * d = new double[n];

char word[6]; // an array of 6 characters called word
word[0] = ‘a’;

20

Dynamic arrays in C++ (Vectors)
#include <iostream>

#include <fstream>

#include <sstream>

#include <vector> // must have this in order to use vector

#include <algorithm>

using namespace std;

int main(int argc, char* argv[]){

vector<string> vec; // make an empty vector that will be made up of strings

vec.push_back("ZABC"); // adds “ZABC” to the vector, can be accesses with strings[0]

vec.push_back("DEF"); // adds ”DEF”

for(auto x : vec){

cout << x << endl;

}

vec.clear(); // empty the vec of all elements

// documentation http://www.cplusplus.com/reference/vector/vector/

}

21

http://www.cplusplus.com/reference/vector/vector/

Custom data types in C++ (Structs)

struct complex{

int real;

int img;

};

int main(int argc, char* argv[]){

complex a = { 10 , 1} ;

cout << “Real: ” << a.real << “ Img: ” << a.img << endl;

complex * p = &a;

cout << “Real: ” << p->real << “ Img: ” << p->img << endl;

}

22

Sorting in C++ with sort
#include <iostream>

#include <fstream>

#include <sstream>

#include <vector>

#include <algorithm> // must have this in order to use sort

using namespace std;

bool my_cmp(const string & a, const string & b){

return(a < b);

}

int main(int argc, char* argv[]){

vector<string> vec;

vec.push_back("ZABC");

vec.push_back("DEF");

sort(vec.begin(), vec.end(), my_cmp);

for(auto x : vec){

cout << x << endl;

}

}

23

Other sorting options in C++

24

Other sorting options in C++

http://www.cplusplus.com/reference/

25

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

Example of reading in a file in C++
(and a few other things)

26

Loading a file in C++

Example of reading in a file in C++
(and a few other things)

27

Loading a file in C++

…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

