Genome 540 Discussion

Conor Camplisson

January 51, 2023

UNIVERSITY OF WASHINGTON

Genome}iences

Outline

« Homework #1 Overview

« C++ Programming Tips

Outline

« Homework #1 Overview

Homework #1

* Program a suffix array

* Test it on the files provided and compare results to the test
output

* Run your program on the orthologous 10-megabase regions in
the human and mouse genomes.

* Use the UCSC genome browser (hg38 and mm10) to figure out
what biological feature they (the longest match) correspond to

* Submit your program output and your code

Suffix trees

* Applications:
* Finding longest-repeated substring
* Finding all repetitions in a string
« Computing substring statistics
« Approximate string matching
« Compression
« Genetic sequence analysis

NA$

$

* https://www.youtube.com/watch?v=hLsrPsFHPcQ&t=1s

https://www.youtube.com/watch?v=hLsrPsFHPcQ&t=1s

Suffix arrays

« Substantially more space-efficient
« Search times comparable
» Greater upfront build time

« “A primary motivation for this paper was to be able to efficiently answer on-line
string queries for very long genetic sequences (on the order of one million or
more symbols long). In practice, it is the space overhead of the query data
structure that limits the largest text that may be handled.”

« Fancier implementations than yours take advantage of the fact that you're not
sorting arbitrary strings, and that suffix trees can be built more quickly

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 5, pp. 935-948, October 1993 003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*
UDI MANBER* AND GENE MYERS %

Abstract. A new and conceptually simple data structure, called a suffix array, for on-line string searches is
introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, “Is
W a substring of A?” to be answered in time O(P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (N) time in the worst
case, versus O(N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O (N) expected time, albeit with lesser space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 5, pp. 935-948, October 1993 003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*

Yahoo!, Amazon, Google, YouTube, =—— UDI MANBER¥|anp GENE MYERS %

NIH

Abstract. A new and conceptually simple data structure, called a suffix array, for on-line string searches is
introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, “Is
W a substring of A?” to be answered in time O(P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (N) time in the worst
case, versus O(N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O (N) expected time, albeit with lesser space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 5, pp. 935-948, October 1993 003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*

Yahoo!, Amazon, Google, YouTube, —— UDI MANBER t|anp IGENE MYERS 8 [~ One of the creators of BLAST

NIH

(1990),
Abstract. A new and conceptually simple data structure, called a suffix array, f@jﬁ&@ﬁf%‘%ﬁﬂ@@é&emmy

introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, “Is
W a substring of A?” to be answered in time O(P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (N) time in the worst
case, versus O(N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O (N) expected time, albeit with lesser space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12

P7

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC

10

Some HW1 issues

« Efficiency
e <1 min, <200 MB RAM

« C++ ops to avoid:
« += (for long strings — e.qg. reading files)
* push_back
« strlen on suffices

* FASTA file sequence lines may have:
« White space, digits
» Mixed case

* N’s / other ambiguity codes
* long N tracts are problem for suffix arrays!

11

HW1 tips

o Start with pseudocode/python

« Get comfortable with pointers

* Think about how to store inputs
* Think about how to store results
« Output to template directly

12

Outline

« C++ Programming Tips

13

Pointers: conceptual introduction

5 houses 5 pointers to houses

777 Brockton Avenue, Abington MA 2351
30 Memorial Drive, Avon MA 2322

250 Hartford Avenue, Bellingham MA 2019
700 0Oak Street, Brockton MA 2301

66-4 Parkhurst Rd, Chelmsford MA 1824

Pointers In C++

 Pointers are memory addresses, which point to variables

* There are two operators essential for handling pointers and memory
addresses in C/C++. * and &

« Unfortunately, both operators can be used in two ways which often
leads to confusion.

15

*as a suffix to a type is a “pointer”

char * p; // p is a memory location that stores a “char”

16

& as a unary prefix Is the address-of operator and
obtains the memory address of a variable

’.

char x = ‘h’;

char * p = &x;

17

*as a unary prefix means content of that
memory location

chary = ‘a’;
char* p = &y; // p points to the memory location of y

char x = *p; // *p is the object that p points to (i.e. ‘a’)

18

& as a suffix to a type means “pass by
reference’

I/ pass by reference
void my_func(int &a){

a=J;

}

Int main(int argc, char* argv[]){
Inta = 0;
my_func(a);

cout << a << endl;

19

Arrays point to blocks of memory

 Arrays are just pointers to continuous blocks of memory

char word[6]; // an array of 6 characters called word
word[0] = ‘@’;

* Array indices are just pointer arithmetic and dereferencing
combined

* a[12] is the same as *(a + 12)

 &a[3]isthesameasa+3 L W’ \0’
const char *word = “hi”;

word[0] word[1] word[2]

0x80 Ox88 0x90
word word+1 word+2

* Large arrays should be dynamically allocated (on the heap)
* Make sime wawd delale;them

double * d = new double[n];

20

Dynamic arrays in C++ (Vectors)

#include <iostream>

#include <fstream>

#include <sstream>

#include <vector> // must have this in order to use vector
#include <algorithm>

using namespace std;

int main(int argc, char* argv[] §
vector<string> vec; // make an empty vector that will be made up of strings
vec.push_back("ZABC"); // adds “ZABC” to the vector, can be accesses with strings[0]
vec.push_back("DEF"); // adds "DEF”
for(auto x : vec){
cout << x << endl;
}
vec.clear(); // empty the vec of all elements
// documentation http://www.cplusplus.com/reference/vector/vector/

21

http://www.cplusplus.com/reference/vector/vector/

Custom data types in C++ (Structs)

struct complex{
Int real;
Int img;
¥
Int main(int argc, char* argv(]){

complexa={10, 1};
cout << “Real: " << a.real <<* Img:” << a.img << end];

complex * p = &a;
cout << “Real: ” << p->real <<“ Img:” << p->img << endl;

22

Sorting in C++ with sort

#include <iostream>

#include <fstream>

#include <sstream>

#include <vector>

#include <algorithm> // must have this in order to use sort
using namespace std;

bool my_cmp(const string & a, const string & b){
return(a<b);

}

int main(int argc, char* argv[]){
vector<string> vec;
vec.push_back("ZABC");
vec.push_back("DEF");
sort(vec.begin(), vec.end(), my_cmp);
for(auto x : vec){

cout << x << endl,

23

Other sorting options in C++

function

qsort

<cstdlib>

void gsort (void* base, size t num, size t size,
int (*compar) (const void*,const void*));

Sort elements of array

Sorts the num elements of the array pointed to by base, each element size bytes long, using the compar function to
determine the order.

The sorting algorithm used by this function compares pairs of elements by calling the specified compar function with
pointers to them as argument.

The function does not return any value, but modifies the content of the array pointed to by base reordering its
elements as defined by compar.

The order of equivalent elements is undefined.

24

Other sorting options in C++

function

qsort

<cstdlib>

void gsort (void* base, size t num, size t size,
int (*compar) (const void*,const void*));

Sort elements of array

Sorts the num elements of the array pointed to by base, each element size bytes long, using the compar function to

determine the order.

The sorting algorithm used by this function compares pairs of elements by ca
pointers to them as argument.

The function does not return any value, but modifies the content of the array
elements as defined by compar.

The order of equivalent elements is undefined.

http://www.cplusplus.com/reference/

/* gsort example */
#include <stdio.h> /* printf */
#include <stdlib.h> /* gsort */

int values[] = { 40, 10, 100, 90, 20, 25 };

int compare (const void * a, const void * b)
{
return (*(int*)a - *(int*)b);

}

int main ()
{
int n;
gsort (values, 6, sizeof(int), compare);
for (n=0; n<6; n++)
printf ("%d ",values[n]);
return 0;

25

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

#include <cstdio>
#include <iostream=
#include <fstream>
#include <string>

Loading a file In C++

filename, & contents, & num_1lines)

T3
f.open(filename.c_str());
line;
contents = "";
num_Llines = 0;
while(getline(f, line)) {
contents.append(line.substr(@, line.length()));
num_lines++;

}

f.close();

argc, const % argv[])

fn = argvl[1];
contents;
num_lines;

read_file(fn, contents, num_lines);

cout << "Read: " << fn << "\n";;
cout << " % " << num_lines << " lines\n";
cout << " x " << contents.length() << " characters (excluding newlines)\n";

% contents_cstring = (*)contents.c_str();
for (i = @; i < contents.length(); i++) {
assert(contents_cstring[i] == x(contents_cstring + i));
Iassert(contents_cstring[i] contents.at(i));
}

assert(contents_cstring[contents. length()] == '\0');

<cstdio>
<iostream=
<fstream>
<string>
<cassert>

Loading a file In C++

(filename, & contents, & num_1lines)
Annes-MacBook-Pro-2:sandbox anne$ g++ example.cpp -0 example

B Annes-MacBook-Pro-2:sandbox anne$./example example.cpp
f.open(filename.c_str());
line; Read: example.cpp
* 45 lines
contents = ""; * 971 characters (excluding newlines)
num_Llines = 0;
while(getline(f, line)) {
contents.append(line.substr(@, line.length()));
num_lines++;

}

f.close();

If you are using Mac
(under macOS12.1, my experience):

argc, const * argvl[])

fn = argvl[1];
contents;
num_lines;

read_file(fn, contents, nun_lines); potentially you need to install Xcode,
cout << "Read: " << fn << "\n';; and use clang++ instead of g++

cout << " x " << num_lines << " lines\n";
cout << " x " << contents.length() << " characters (excluding newlines)\n";

% contents_cstring = (*)contents.c_str();
for (i = @; i < contents.length(); i++) {
assert(contents_cstring[i] == x(contents_cstring + i));
Iassert(contents_cstring[i] == contents.at(i));
}

assert(contents_cstring[contents. length()] == '\0');

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

