Genome 540 Discussion

Conor Camplisson

January $12^{\text {th }}, 2023$

Outline

- Related topics
- Entropy
- Information Theory
- Homework 2 overview
- Homework 1 \& 2 questions

Outline

- Related topics
- Entropy
- Information Theory
- Homework 2 overview
- Homework 1 \& 2 questions

Entropy: microstates, macrostates

Why isn't all the air on one side of the room?

Macrostate: 0\%
Microstates: 1

15\%
few

30\%

50\%
many overwhelming, only observed

Macrostate
In order

Out of order
~1.55e66

Entropy: microstates, macrostates

Rolling two dice

Macrostates (outcomes)

Information Theory

sending information over a noisy channel

Harry Nyquist

Information Theory

sending information over a noisy channel

Certain Topics in Telegraph Transmission Theory

H. NYQUIST, MEMBER, A. I. E. E.

Classic Paper

(¢) Bell Laboratories

Communication in the Presence of Noise*
CLAUDE E. SHANNONt. mEMBER, IRE

- Radio astronomy
- Transistor
- LASER
- Photovoltaic cell
- Charge-coupled device (CCD)
- UNIX, C, C++, AWK, others
- 9 Nobel Prizes
- Information Theory

Claude Shannon

Information Theory

Quantifying information

Information gain

What do you learn from a coin flip?

Information gain

I'm thinking of a card...

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| hint | num_cards | total_cards | prob | info_bits |
| red | 26 | 52 | 0.50 | 1.00 |
| not_face | 40 | 52 | 0.77 | 0.38 |
| heart | 13 | 52 | 0.25 | 2.00 |
| 5 | 4 | 52 | 0.08 | 3.70 |
| 5_hearts | 1 | 52 | 0.02 | 5.70 |

Information gain

$$
\mathrm{I}(\mathrm{x})=-\log _{2}(\mathrm{P}(\mathrm{X}=\mathrm{x}))
$$

Entropy, information, and probabilities are linked
Less probable events are more informative!

Sequence Logos

- Population of sequences
- Nucleotide, amino acid sequences
- Information entropy at each site
- Evolution selects a residue
- Loss of entropy at that site
- Visualize both identity and importance

Sequence Logos

- Population of sequences
- Nucleotide, amino acid sequences
- Information entropy at each site
- Evolution selects a residue
- Loss of entropy at that site
- Visualize both identity and importance

Sequence Logos

19 lexA Binding Sites
蓄 19 lexA Binding Sites

Y -axis $=$ loss of entropy \sim information
Identity of a random residue out of $\{A, C, G, T\}$ contains 2 bits of info:

$$
-\log 2(1 / 4)=2.0
$$

A value of 0.0 means no entropy was lost, uniform probabilities $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

A value of 2.0 means all entropy was lost, identity is $p=1.00$ for selected residue

Examples of info theory's use in research

Sequence logos

Visualize loss of sequence entropy at sites

Metabolic pathway analysis

Maximize information gain when choosing carbon atoms to trace

Compressed sensing \& FISH

Gather a few microscope images, impute many distinct images

MERFISH

Linear Block Code theory (Hamming), error-correcting codes

Outline

- Related topics

- Entropy
- Information Theory
- Homework 2 overview
- Homework 1 \& 2 questions

Homework 2 Overview

Part one: write a new program

- read in a file in FASTA format
- determine the frequencies of the nucleotides and dinucleotides (based on the forward strand) and the length of the sequence
- produce three simulated sequences based on the length and nucleotide or dinucleotide frequency of the original sequence
- 'Equal frequency' model
- Order 0 Markov model
- Order 1 Markov model
- output three files in FASTA format containing the simulated sequence

Homework 2 Overview

order-0 Markov

"Equal frequency" model

```
Nucleotide Frequencies:
A=0.2500
C=0.2500
G}=0.250
T=0.2500
```

Fasta 1: CP003913.fna
>gi|440453185|gb|CP003913.1| Mycoplasma pneumoniae M129-B7, complete genome
*=816373
A=249201
$\mathrm{C}=162924$
G=163697
$\mathrm{T}=240551$
$\mathrm{N}=0$
Nucleotide Frequencies:
$\mathrm{A}=0.3053$
$\mathrm{C}=0.1996$
G=0.2005
$\mathrm{T}=0.2947$

order-1 Markov

Homework 2 Overview

Part two: run your HW1 program on three simulated genomes

- Run your HW1 program three times, using as input:
- Human $10-\mathrm{Mb}$ segment + simulated 'equal frequency’ genome
- Human $10-\mathrm{Mb}$ segment + simulated Mouse Markov-0
- Human $10-\mathrm{Mb}$ segment + simulated Mouse Markov-1
- Given observed matches between the Human and simulated genomes, what can you conclude about the statistical significance of matches between the orthologous mouse and human regions in homework 1?

Outline

- Related topics
- Entropy
- Information Theory
- Homework 2 overview
- Homework 1 \& 2 questions

Homework 1\&2 Questions ?

$\mathrm{p}_{10} \quad$ AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{1}
p_{7}
p_{19}
p_{29}
p_{31}
p_{33}
p_{27}
p_{11} AACCGTACACTGGGTTCAAGAGATTTCCC
p_{28} AAGAGATTTCCC
$\mathrm{p}_{17} \quad$ ACACTGGGTTCAAGAGATTTCCC
$\mathrm{p}_{12} \quad$ ACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC
AGAGATTTCCC
AGATTTCCC
ATTTCCC
CAAGAGATTTCCC

Observed Dinuc Freqs
$A \quad C \quad G \quad T$
A $\quad 0.099 \quad 0.051 \quad 0.069 \quad 0.078$
C 0.0730 .0520 .0110 .069
G $0.0590 .043 \quad 0.0520 .050$
T 0.0660 .0590 .0720 .098

Reminders

- Homework 1 due this Sunday Jan. 15, 11:59 pm
- Homework 2 will be posted tonight (Jan. 12)

