Genome 540 Discussion

Conor Camplisson

January 12th, 2023

Outline

- Related topics
 - Entropy
 - Information Theory

Homework 2 overview

• Homework 1 & 2 questions

Outline

- Related topics
 - Entropy
 - Information Theory

Homework 2 overview

• Homework 1 & 2 questions

Entropy: microstates, macrostates

Why isn't all the air on one side of the room?

0%

1

Macrostate:

Microstates:

few

30%

50% overwhelming,

only observed

52 cards \rightarrow 52! = 1.55e66 orderings

many

<u>Macrostate</u>

In order

1

<u># Microstates</u>

Out of order

~1.55e66

Entropy: microstates, macrostates

Rolling two dice

Macrostates (outcomes)

Microstates (configurations)

- Entropy is directly related to probability
- Microstate statistics explain macro phenomena
 - Quantum \rightarrow thermodynamics, gases
 - Quantum \rightarrow chemical equilibrium, kinetics

Information Theory

sending information over a noisy channel

Information Theory

sending information over a noisy channel

Certain Topics in Telegraph Transmission Theory

H. NYQUIST, MEMBER, A. I. E. E.

Harry Nyquist

Communication in the Presence of Noise*

CLAUDE E. SHANNON[†]. MEMBER, IRE

- Radio astronomy
- Transistor
- LASER
- Photovoltaic cell
- Charge-coupled device (CCD)
- UNIX, C, C++, AWK, others
- 9 Nobel Prizes
- Information Theory

I. INTRODUCTION

ENERAL COMMUNICATIONS system is hown schematically in Fig. 1. It consists essenially of five elements.

information source. The source selects one mesn a set of possible messages to be transmitted to ving terminal. The message may be of various r example, a sequence of letters or numbers, as aphy or teletype, or a continuous function of , as in radio or telephony.

e transmitter. This operates on the message in y and produces a signal suitable for transmishe receiving point over the channel. In teleph-

Claude Shannon 7

Information Theory

Quantifying information

Claude Shannon

👀 Generate Password	? ×
badpassword	• C 🖹
Password Quality: Poor	Entropy: 9.35 bit
👀 Generate Password	? ×
851\$gXyDi	 ○ ○
Password Quality: Weak	Entropy: 54.56 bit
🗿 Generate Password	? ×
y\0`"8jfHzJX+yRM	 ○ ○ (*)
Password Quality: Excellent	Entropy: 100.66 bit

Information entropy

$$\operatorname{H}(X) = -\sum_{i=1}^n \operatorname{P}(x_i) \log \operatorname{P}(x_i)$$
 .

H(toss) = -(p(heads) * log2 (p(heads) + p(tails) * log2(p(tails)))

H(toss) = -(0.5*log2(0.5) + 0.5*log2(0.5)) = 1.0 bit

"binary digit" \rightarrow "bit"

Information gain

What do you learn from a coin flip?

Heads X

 \checkmark

Tails

Information gain

$$I(x) = -\log_2(P(X=x))$$

Fair coin: $I(Tails) = -\log_2(1/2) = 1$ bit

Less probable events are more informative!

prob_heads	info_gain	
0.10	3.32	
0.20	2.32	
0.30	1.74	
0.40	1.32	
0.50	1.00	
0.60	0.74	
0.70	0.51	
0.80	0.32	
0.90	0.15	
1.00	0.00	

Information gain

9000

l'r	n thinking of a c	ard			
hint	num_cards	total_cards	prob	info_bits	
red	26	52	0.50	1.00	
not_face	40	52	0.77	0.38	
heart	13	52	0.25	2.00	
5	4	52	0.08	3.70	
5_hearts	1	52	0.02	5.70	

Information gain

 $I(x) = -\log_2(P(X=x))$

Entropy, information, and probabilities are linked

Less probable events are more informative!

Information ~ a loss in entropy / a resolution of uncertainty

Sequence Logos

NLS

- Population of sequences
 - Nucleotide, amino acid sequences
- Information entropy at each site
 - Evolution *selects* a residue
 - Loss of entropy at that site
- Visualize both identity and importance

Sequence Logos

Sequence Logos

Y-axis = loss of entropy ~ information

Identity of a *random* residue out of {A, C, G, T} contains 2 bits of info:

 $-\log 2(1/4) = 2.0$

A value of 0.0 means no entropy was lost, uniform probabilities {A, C, G, T}

A value of 2.0 means all entropy was lost, identity is p=1.00 for selected residue

Examples of info theory's use in research

Visualize loss of sequence entropy at sites

Metabolic pathway analysis

Maximize information gain when choosing carbon atoms to trace

Compressed sensing & FISH

Gather a few microscope images, impute many distinct images

MERFISH

Linear Block Code theory (Hamming), error-correcting codes

Outline

- Related topics
 - Entropy
 - Information Theory

Homework 2 overview

• Homework 1 & 2 questions

Homework 2 Overview

Part one: write a new program

- read in a file in FASTA format
- determine the frequencies of the nucleotides and dinucleotides (based on the forward strand) and the length of the sequence
- produce three simulated sequences based on the length and nucleotide or dinucleotide frequency of the original sequence
 - 'Equal frequency' model
 - Order 0 Markov model
 - Order 1 Markov model
- output three files in FASTA format containing the simulated sequence

Homework 2 Overview

order-0 Markov

"Equal frequency" model

Nucleotide Frequencies:

A=0.2500

C=0.2500

G=0.2500

T=0.2500

Fasta 1: CP003913.fna
>gi 440453185 gb CP003913.1 Mycoplasma pneumoniae M129-B7, complete genome
*=816373
A=249201
C=162924
G=163697
T=240551
N=0
Nucleotide Frequencies:
A=0.3053
C=0.1996
G=0.2005
T=0.2947

order-1 Markov

Dinucleotide Frequency Matrix: A=0.1207 0.0622 0.0587 0.0637 C=0.0650 0.0449 0.0328 0.0569 G=0.0501 0.0455 0.0450 0.0599	=
T=0.0695 0.0470 0.0640 0.1141 Conditional Frequency Matrix:	
A=0.3953 0.2037 0.1923 0.2087	= 1
C=0.3256 0.2251 0.1642 0.2851	= 1
G=0.2497 0.2269 0.2246 0.2988	= 1
T=0.2360 0.1594 0.2173 0.3873	= 1

Homework 2 Overview

Part two: run your HW1 program on three simulated genomes

- Run your HW1 program three times, using as input:
 - Human 10-Mb segment + simulated 'equal frequency' genome
 - Human 10-Mb segment + simulated Mouse Markov-0
 - Human 10-Mb segment + simulated Mouse Markov-1
- Given observed matches between the Human and simulated genomes, what can you conclude about the statistical significance of matches between the orthologous mouse and human regions in homework 1?

Outline

- Related topics
 - Entropy
 - Information Theory

Homework 2 overview

• Homework 1 & 2 questions

Homework 1&2 Questions ?

p ₁₀	AAACCGTACACTGGGTTCAAGAGATTTCCC
p ₁₁	AACCGTACACTGGGTTCAAGAGATTTCCC

- p₂₈ AAGAGATTTCCC
- p₁₇ ACACTGGGTTCAAGAGATTTCCC
- **p**₁₂ ACCGTACACTGGGTTCAAGAGATTTCCC
- **p**₁ ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
- **p**₇ ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
- **p**₁₉ ACTGGGTTCAAGAGATTTCCC
- p₂₉ AGAGATTTCCC
- p₃₁ AGATTTCCC
 - ATTTCCC

p₃₃

p₂₇ CAAGAGATTTCCC

Observed Dinuc Freqs A C G T A 0.099 0.051 0.069 0.078 C 0.073 0.052 0.011 0.069 G 0.059 0.043 0.052 0.050 T 0.066 0.059 0.072 0.098

• Homework 1 due this Sunday Jan. 15, 11:59 pm

• Homework 2 will be posted tonight (Jan. 12)