Genome 540 Discussion

Conor Camplisson

January 26th, 2023

Outline

• Homework 4 overview

• Homework 3 & 4 questions

Outline

• Homework 4 overview

Homework 3 & 4 questions

Part one: max weight path through a WDAG

- Write a program to find the max weight path
- Convert a WDAG diagram to a text representation (by hand)
- Determine the max weight path using your program
 - Both: unconstrained, constrained start/stop vertices

Part two: GC-rich genomic sub-sequence

- Write a program to represent a genome as a WDAG, export .txt
 - GC vs. AT scoring scheme
- Determine the max weight path using your program
 - GC-rich sub-sequence, lookup feature in .gbff file

Part one: max weight path through a WDAG

- Write a program to find the max weight path
- Convert a WDAG diagram to a text representation (by hand)
- Determine the max weight path using your program
 - Both: unconstrained, constrained start/stop vertices

Part two: GC-rich genomic sub-sequence

- Write a program to represent a genome as a WDAG, export .txt
 GC vs. AT scoring scheme
- Determine the max weight path using your program
 - GC-rich sub-sequence, lookup feature in .gbff file

wdag_unconstrained.txt

V	i	
V	ij	L
V	ij	Li
V	i٦	J
V	V	
Ε	А	i ii -2
Ε	В	i iv -2
Ε	С	i iii 2
Ε	D	i v 2
Ε	Ε	ii iv 2
Ε	F	iii iv -1
Ε	G	iii v -1
Ε	Η	iv v 2

Score: 4.0

Example WDAG

wdag_constrained.txt

i START V V ii V iii V iv v END V A i ii -2 F EBiiv-2 C i iii 2 E Div2 E E ii iv 2 F F iii iv -1 Е G iii v -1 F Hivv2 Е

Score: 3.0

Test WDAG

Homework WDAG

Assignment: GS 540 HW4 Name: Conor Camplisson Email: concamp@uw.edu Language: C++/Python Runtime: 0m17.545s

Part 1 Score: 8 Begin: vi End: ii Path: ID

Part 2 Score: 4 Begin: vii End: i Path: LIDA

Part one: max weight path through a WDAG

- Write a program to find the max weight path
- Convert a WDAG diagram to a text representation (by hand)
- Determine the max weight path using your program
 - Both: unconstrained, constrained start/stop vertices

Part two: GC-rich genomic sub-sequence

- Write a program to represent a genome as a WDAG, export .txt
 - GC vs. AT scoring scheme
- Determine the max weight path using your program
 - GC-rich sub-sequence, lookup feature in .gbff file

Example sequence:

5'-ATCTG-3'

WDAG representation:

Test Genome

Homework Genome

S. pyogenes

Home > Genome Editing > Products > Cas9 Nuclease, S. pyogenes

Cas9 Nuclease, S. pyogenes 🔜 💓 🕅 😗

Part 3
Fasta: CP003508.fna
Non-alphabetic characters: 0
>gi|400273702|gb|CP003508.1| Mycoplasma gallisepticum NC96_1596-4-2P, complete genome
*=986257
A=337443
C=156212
G=155909
T=336693
N=0
Score: 11.07
Begin: 344420
End: 344444
Path: GGCGGCCGCCCTGGCGATGGCCG

Description: This sequence lies within the HFMG96NCA_2038 gene (encodes a hypothetical protein).

Outline

• Homework 4 overview

• Homework 3 & 4 questions

Homework 3 & 4 Questions ?

Reminders

- Homework 3 due this Sunday Jan. 29, 11:59 pm
 - Single text file, compressed with gzip
 - name in the file: camplisson_hw3.txt.gz

• Homework 4 due next Sunday Feb. 5, 11:59 pm