
Genome 540 Discussion

Conor Camplisson

February 14th, 2023

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

Homework 5 Wrap-up

4

Homework 5 Wrap-up

5http://bozeman.mbt.washington.edu/compbio/mbt599_2022/Lec8.pdf

1 seq → 1-D sequence graph 2 seqs → 2-D Edit graph(pairwise alignment)

http://bozeman.mbt.washington.edu/compbio/mbt599_2022/Lec8.pdf

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

8

Jupyterlab IDE on GS Cluster

Web browser interface to GS cluster

9

Jupyterlab IDE on GS Cluster

JupyterLab is a web app:

• A webserver runs the application

• A user goes to the app’s URL

• The server renders the homepage (the IDE)

1. Log into the cluster and run a JupyterLab server

• App is running on $HOST:$PORT

2. Create an SSH tunnel from your PC to $HOST on $PORT

3. Access the IDE at localhost:$PORT in your web browser

$ jupyter lab --no-browser --ip=$(hostname) --port=8889

$ ssh -L 8889:sage001:8889 concamp@nexus.gs.washington.edu(local)

(on grid)

http://localhost:8889/(local) Contact me for a detailed guide!

10

AWS Cloud9: Similar Solution (for non-UWGS servers)

• Provides web browser IDE interface to any server you can SSH into

• Fast access to any AWS data, cloud compute infrastructure

• Analogous to doing dev right on GS cluster

• Cloud9 IDE itself is free to use, even on a non-AWS server

• Supports collaboration, live co-editing of code, backed by AWS Auth layer

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

12

GitHub Basics

Jupyter notebook renderingFront-end rendering of Markdown documentation

Front-end features:

• Browse, search codebase, link to a line of code

• Open an issue (to alert developers, comment, track updates)

• Examine ‘diffs’ between each version

• Homepage and documentation for your project

• Front-end rendering (notebooks, pdf, markdown), syntax highlighting (code)

13

GitHub Basics
“Git flow” branching model

Very useful when a project:

• Is in production, with active users

• Has multiple developers

• Has a large codebase

• Has a complicated dev life cycle:

• Production version live

• Next version being developed

• Push a bug fix to dev and prod branches

…but can be cumbersome/confusing

You can go very far (building and deploying projects) with just:

$ git status

$ git add <file(s)>

$ git commit –m ‘fix a rounding bug’

$ git push

14

GitHub Basics
Only once ever (per server)

Set up your SSH keys with GitHub

• Generate SSH keys on your machine if you haven’t already

• Using the GitHub website, add your public key to your account

• Now that machine can log into GitHub as you to push/pull code

When starting a new project

• Create a new repo in the GitHub web interface

• The auto README.md, LICENSE, .gitignore features are very useful

• Clone the new repo to your machine using the command line

• Start working in the new repo locally

Day to day dev workflow with GitHub

• Develop and test some code locally

• When you’ve implemented a coherent “change” (one or several files), “commit”

your change(s) with a descriptive message

• Push your latest commit(s) to the cloud repo to update it

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

16

Virtual Environments & Conda

Why use virtual environments?

Problem: you work on two projects on your PC. One requires numpy version 19

and one requires numpy version 20. Which version of numpy should you install?

Solution: use a different virtual env for each project, with the right numpy versions

Problem: your code runs on your machine, but it depends on several locally

installed packages. How will you run it on the cluster? How will your users run it?

Problem: your app runs in the cloud, and you edit a local version, you are

actively adding features and new dependencies often, so both servers keep

needing new packages installed. How can you keep all server(s) up to date?

Solution: environment.yml in the repo describes a virtual env, when you pull changes
($ git pull) you can also $ conda env update –f environment.yml

17

Virtual Environments & Conda

Only once ever (per server)

• Install conda (e.g. miniconda3)

• (optional, faster/powerful) install mamba to your conda base env

• From now on, use $ mamba instead of $ conda executable

When starting a new project

• Create a new conda environment, install dependencies manually

• Export environment to .yml
• only include top-level dependencies (i.e. things you import)

• Use --no-builds flag to enable cross-platform env builds from yaml

Day to day dev workflow with GitHub

• When working in a repo, activate that repo’s conda env

• If you install and use a new package, add it to .yml and push to cloud repo

• Before you ever push an edited .yml, make sure the env actually builds

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

19

Intro to Snakemake

(not shown)

20

Intro to Snakemake

Why use virtual Snakemake?

Bash pipelines work. Snakemake just automates several tedious aspects:

• Automatic creation of target output directories, useful flags for temp files with

(optional) auto-delete

• Many utils for logging, benchmarking resource usage, reporting, etc.

• --cluster switch for local (1 CPU) vs. parallel (cluster nodes) execution

• edit pipeline locally, push to cluster/cloud, run same code at scale!

• Move on to next step, per file, as soon as it’s available

• Job dependency graph more efficient than iteration (resource utilization)

• Listen for target output file creation asynchronously, start next job

21

Next time: Simple pipeline in Snakemake

22

Example: GitHub + Conda + Snakemake

2 shell commands:

• Clone the pipeline repo

• Install dependencies

• bedtools, biopython,

bowti2, jellyfish,

numpy, nupack,

pandas, pybedtools,

sam2pairwise,

samtools, sklearn,

scipy, xgboost, zip

• Run genome-wide

pipeline on test files

Outline

• Homework 5 wrap-up

• Related topics:
• JupyterLab IDE on GS cluster

• GitHub basics

• Virtual environments and conda

• Intro to Snakemake

• Homework 6 questions

Homework 6 Overview

24

Goal: to find CNVs using D-segmentschm13.chr16.txt

Position (chr16)

Avg. #
Reads

Data: next-gen read alignments to genome, CHM13 chr16

Observed symbols: counts of read starts at each position

• Frequencies from Poisson dist. with appropriate mean

Target regions: heterozygous duplications

• One chrom = ref allele, other = dup, Poisson mean 1.5X background

Homework 6 Overview

25

D-segment algorithmchm13.chr16.txt

http://bozeman.mbt.washington.edu/compbio/mbt599_2022/Lec12.pdf

http://bozeman.mbt.washington.edu/compbio/mbt599_2022/Lec12.pdf

Homework 6 Overview

26

D-segment info

Annotations for top 3 scoring segments

Read start count histograms

Reminders

27

• Homework 6 due this Sunday Feb. 19, 11:59 pm

• Homework 7 will be posted tomorrow

…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

