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« Homework 8 details & questions



Homework 8 Overview

Pyrococcus horikoshii

Scientific classification

Pyrococcus horikoshii

Domain: Archaea

Hyperthermophile, 98 C !

Kingdom: Euryarchaeota

Phylum: Euryarchaeota

Class: Thermococci e Anaerobic archaeon

Order: Thermococcales

FEIRE s « Isolated from Okinawa Trough Okinawa trough
Genus: Pyrococcus

Species:  P. horikoshii T.stetteri

Growth enhanced by Sulfur

Binomial name

Pyrococcus horikoshii
Erauso et al. 1993

32 min doubling time (growth rate)

T.litoralis

package, 1996). The phylogenetic tree diagrams were gener- M. fervidu
ated by the PHYLIP suite of programs (Kuhner and
Felsenstein 1994).

a M.jannaschii

T.profundus

P.furiosus

P.abyssi

‘P.horikoshii’

Fig. 3. Phylogenetic trees representing the relatedness of P. horikoshii

Gonzalez, J., Masuchi, Y., Robb, F. et al. Extremophiles 2, 123-130 (1998). https://doi.org/10.1007/s007920050051
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EM Algorithm Overview

In statistics, an expectation—maximization (EM) algorithm is an iterative method to find
(local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in
statistical models, where the model depends on unobserved latent variables.

The EM iteration alternates between performing an expectation (E) step, which creates a
function for the expectation of the log-likelihood evaluated using the current estimate for
the parameters, and a maximization (M) step, which computes parameters maximizing
the expected log-likelihood found on the E step. These parameter-estimates are then
used to determine the distribution of the latent variables in the next E step.

Delay
1o0 T

| EM clustering of Old Faithful eruption data.

. (R The random initial model (which, due to the different scales of
— 1* 4 the axes, appears to be two very flat and wide elipses) is fit to
) e the observed data.

In the first iterations, the model changes substantially, but

g0 +T+_;£ :
ot
o e then converges to the two modes of the geyser.
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https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization algorithm
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Baum-Welch + Forward/Backward Algorithm

the Baum—-Welch algorithm is a special case of the expectation—maximization algorithm (EM)
used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the
forward-backward algorithm to compute the statistics for the expectation step.

The forward-backward algorithm makes use of the principle of dynamic programming to
efficiently compute the values that are required to obtain the posterior marginal distributions in
two passes. The first pass goes forward in time while the second goes backward in time;
hence the name forward—backward algorithm.

Forward procedure [edit]

Leta;(t) = P(Y1 = y1,...,Y: =y, Xy = i | 6), the probability of seeing the
observations y1, ¥, - . ., Yy and being in state 2 at time ¢. This is found recursively:

i al(l) = ﬂ'ibi(yl),

2.ai(t+1) =bi(ys1) Y o;(t)aji.

J=1

=

Since this series converges exponentially to zero, the algorithm will numerically
underflow for longer sequences.[®! However, this can be avoided in a slightly
modified algorithm by scaling « in the forward and 3 in the backward procedure
below.

https://en.wikipedia.org/wiki/Baum%E2%80%93Welch algorithm
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Homework 8 Overview

Baum-Welch Algorithm

Baum—Welch is an expectation-maximization algorithm that uses the forward—backward algorithm.

1. Use the forward algorithm to calculate the forward probabilities for the
HMM.

2. Use the backward algorithm to calculate the backward probabilities for the
HMM.

3. Re-estimate transition, emission, and initial probabilities by calculating the
expected number of each edge type

4. Calculate the new log likelihood of the model (the likelihood of our
observations given our re-tuned model)

5. Repeat until the change in log likelihood is smaller than a given threshold or
when a maximum number of iterations is passed.



Homework 8 Overview

« 2-state HMM for detecting GC-rich regions in Pyrococcus horikoshii genome
 state 1: AT-rich, state 2: GC-rich
 starting parameters are given: initiation, transition, emission probabilities

« Use Baum-Welch training to find improved parameter estimates
« each iteration: compute log-likelihood of the sequence, new probabilities

A A T G C C T G G A T A
« Run until parameter estimates converge

« stop when log-likelihood increase < 0.1 S QS I Z;' ./..
_—

ACGGCTTTGACCAC -

A-+T=rich state

XXX

http://bozeman.mbt.washington.edu/compbio/mbt599/assignments/hw8.html 4
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HMM Overview
A general definition of HMM

HMM = SVBAH)

T~ Initial state probability:
N states N
n=ix,..x,} 2 =1
S =1{8,.
m, : prob of starting at state s,
M symbols State transition probability:

V ={v,..., A={a;} 1si,jsN Ea,.j:l
J=l

a;, : prob of going s,—>s,
Output probability:

M
B=1{b(v,)} 1sisN,lsksM Zb‘(vk)=1

b.(v,): prob of "generating"v,_ ats



HMM Overview
Three Basic Problems in HMMs

Given a set of observation sequences O = O, O, - -+ Oy
and the HMM parameters A = (A, B, ) , computing
the probability P(O|N)

Given a set of observation sequences O = 0, 0O, - -+ O,
and the HMM parameters A\ = (A, B, «) , computing

the optimal state sequences

Given a set of observation sequences O = O, O, * -+ Oy
adjusting the HMM parameters A\ = (A, B, #) to
maximize the probability P(O|N)



HMM Overview

observed symbols
A G C A T
eTtl(A) eTE2(G) e?‘[—;(C| ss e e?‘[[-(A) en”(]—)
Gy Yy my ’Tz ny,Omy ™3 T4 Ui iy
unobserved states

HMM Probabilities of Sequences

Prob of sequence of states m;m,m; ... T, 1S
aOnlanlnzan2n3an3n4 ! an 1%

Prob of seq of observed symbols b,b,b, ... b,
conditional on state sequence 1s

enl(bl)enz(b2) en3(b3) enn(bn)
Joint probability = ao,rl]_[”l-zl Uz, € (D)
(define a_ ,to be 1) l

n-"n+

(Unconditional) prob of observed sequence
= sum (of joint probs) over all possible state paths

— not practical to compute directly, by ‘brute force’! We will use
dynamic programming.

http://bozeman.mbt.washington.edu/compbio/mbt599 2022/Lec13.pdf 10
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HMM Overview

WDAG for 3-state HMM, * Paths through graph from begin node to end node

1 th correspond to sequences of states
eng L Sequence * Product weight along path

weights are emission = joint probability of state sequence & observed symbol

probabilities e,(b;) for it sequence

residue b; weights are transition  Highest-weight path = highest probability state sequence
probabilities » Sum of (product) path weights, over all paths,

= probability of observed sequence
* Sum of (product) path weights over

— all paths going through a particular node, or
— all paths that include a particular edge,

divided by prob of observed sequence,
= posterior probability of that edge or node

b, b, bis
position i-1 position i position i+1

position i-1 position i position i+1

http://bozeman.mbt.washington.edu/compbio/mbt599 2022/Lec13.pdf 11
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HMM Overview

Forward/backward algorithm
» Work through graph in forward direction:

— compute and store f(v)

5 | e Then work through graph in backward direction:
/ — compute b(v)

— compute f(v) b(v) and f(v)wb(v) as above, store in

J(v)b(v) = sum of the path weights of all paths through v. appropriate cumulative sums

f(v")wb(v) = sum of the path weights of all paths through the — only nee.d’to store b(v) until have computed b’s at
edge (v’,v) next position

 Posterior probability of being in state s at
position i 1s A(v) b(v) / total sequence prob
— where v is the corresponding graph node

http://bozeman.mbt.washington.edu/compbio/mbt599 2022/Lecl5.pdf 12
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HMM Overview

. For each vertex v, let f{v) = Z - weight(p), where
m m B m- V\/ paths p ending at v
I ple entlng au elCh weight(p) = product of edge weights in p. Only consider paths
starting at ‘begin’ node.

— An edge in the WDAG contributes fractional (or Compute f{v) by dynam. prog:  Av) = 2.w; v,), where
weighted) counts given by its posterior vj ranges over the parents of v, and
ey w; = weight of the edge from v; to v.
probability:
v
. . W)
- (*) (Zall paths p through edge e Welght(p)) / (Zall paths p Welght(p)) e w5 ;
><v v
(Fractional counts are computed using forward-
backward algorithm) Similarly for 5(v) = 2., beginning at yVeight(p)
The paths heginning at v are the ones ending at v in the reverse (or inverted)
graph
\z, \ — Compute new param estimates
A%
I 2 T fy * e,(b)" = (frac. # times symbol b emitted by state k) /
/ (frac. # times state £ occurs)

* a,, ™ = (frac. # times state k£ followed by state /) / (frac.
f(v)b(v) = sum of the path weights of all paths through v. # times state k occurs)
— (In denom,, omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for
appropriate edge type (emission or transition)

(v )wb(v) = sum of the path weights of all paths through the
edge (v',v)

http://bozeman.mbt.washington.edu/compbio/mbt599 2022/Lecl5.pdf 13
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b, (k)

HMM Overview

Re-estimation of parameters

expected frequency (number of times) in state S; at time (t = 1) = (/)

expected number of transitions from state S; to state S,

expected number of transitions from state S,

T-1
2 Edi, )

T-1
2 Y1)
t=1

expected number of times in state j and observing symbol v,
expected number of times in state |

T

s.t. O = vk
T

2 v j)

t=1

14



HMM Overview

See also: other slides/tutorials/videos

Probabilistic Inference in an HMM
Three fundamental questions for an HMM:

e Compute the probability of a given observation sequence, when the tag
sequence is hidden (language modeling)

e Given an observation sequence, find the most likely hidden state sequence
(tagging)

e Given observation sequence(s) and a set of states, find the parameters
that would make the observations most likely (parameter estimation)

https://people.cs.umass.edu/~mccallum/courses/inlp2004a/lect10-hmm2.pdf

Baum-Welch training algorithm

Begin with some model p (perhaps random, perhaps preselected)

Run O through the current model to estimate the expectations of each
model parameter.

Change the model to maximize the values of the paths that are used a
lot (while still repsecting the stochastic constraints).

Repeat, hoping to converge on optimal values for the model parameters,
[L.

15
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HMM Overview

See also: other slides/tutorials/videos

Calculating the probability of the observations and a

. . Probability of a state i at time ¢
state ¢ at time {

Given model u = (A, B)
we want to find P(x; = i,0|pu)

P(xy=14,0[p) = P(0102...01, 74 = i|p) P(0t+10t42...07| 0 = i, 1)
= a(t)Bi(t)
P(P(xy =1,0|p) = P(0109...04, &1 = i|pt) P(04 1104y 9...07| x4 = i\ )
_— . P(zy =14,0|p)
(Why is this true?) P(xy =10, p) = L = v(t
S )

Remember we have the first part «;(t) = P(0102...04, 1 = i|pt).

We need something for the second part: mirror image of the “forward
procedure”, called “backward procedure.”

https://people.cs.umass.edu/~mccallum/courses/inlp2004a/lect10-hmm2.pdf
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HMM Overview

See also: 2022 GS540 Discussion Slides

(1) = [e;(D) X ay) + o1(2) X ay] X by(C)
. — 1032 X 0.6 4 0.02 % 0.5] X 0.2 Scal L F " F ]
Forward Algorithm  otior cale State 1
1. Initialization: Forward State 2
Ct](i) = 777;111'(01), 1<:< N cl c2 c3

2. Induction: o Initialization

Ofl(i)

i (4) = [Zaza] Ou1),  1<t<T-1L1<j<N. B ) ¢
1 = &N . &t(i) = HC.,- at(i).
. . Zi:l d (1) -
Build a dynamic programming table for these calculations (i) = exdinli) r=1
b,(C)=0.2 1 161
A C G e Induction C. = Htf=1 Cr
a;,=0.6 a,(1) a,(1) N
a,(1) I L O O Guli) = Y dua(f)a;ibi(O)
j=1

State 1 032 0.0404

o State 2 0.02 & = —x 1" ' log[P(O|N)] = Z log c;.
> ic Ge(d)

a,(2) (i) = culi)

Relevant (detailed!) slide decks from CX (2022 TA):

http://bozeman.genome.washington.edu/compbio/mbt599 2022/TA discussion/class15.pdf
http://bozeman.genome.washington.edu/compbio/mbt599 2022/TA discussion/class16.pdf
http://bozeman.genome.washington.edu/compbio/mbt599 2022/TA discussion/class17.pdf
http://bozeman.genome.washington.edu/compbio/mbt599 2022/TA discussion/class18.pdf
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Homework 8 Overview

Underflow — Important!

COURSE-RELATED MATERIALS:

» Math Notation
PrOblem num berS ({0]0) Sma” {0 be Stored |n a Var|ab|e * Biological Review Slides: Gene and genome structure in prokaryotes and eukaryotes
and characteristics of sequence data; Genbank and other sequence databases.
» Nature paper on human genome sequence
. ] » Nature paper on mouse genome sequence
SOI utions: * Siepel eF'Z al. paper on P]]%IIOHMMS & sequence conservation
e Rabiner tutorial on HMMs
* HMM scaling tutorial (Tobias Mann)

« Scale weights to be close to 1
- affects all paths by same constant factor, which can be multiplied back later

« Use log weights, so can add instead of multiplying
« EXx: Instead of 0.0001 * 0.0002, you can do: log(0.0001) + log(0.0002)

What about when you need to sum probabilities in logspace?
» See this blogpost for a solution or Tobias Mann
 https://gasstationwithoutpumps.wordpress.com/2014/05/06/sum-of-probabilities-in-log-prob-space/

18
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Homework 8 Overview

Underflow — Important! | .

Option 1: Rabiner HMM Scaling

A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition

LAWRENCE R. RABINER, FELLOW, IEEE

Although initially intraduced and studied in the late 1960s and
early 1970, siatistical methads of Markoy source or hidden Markov
modeling have become increasingly popular in the last several
years. There are two strong reasons why this has occurred. First the
‘models are very rich in mathematical structure and hence can form
the theoretical basis for use in a wide range of applications. Sec-
and the models, when applied rly, work very well in practice
for several important applications. In this paper we attempt to care-
fully and methodically review the theoretical aspects of this type
of statistical modeling and show how they have been applied to
selected problems in machine recognition of speech.

I INTRODUCTION

Real-world processes generally produce observable out-
puts which can be characterized as signals. The signals can
bediscrete in nature (e.g., characters from a finite alphabet,
quantized vectors from a codebook, etc.), or continuous in

In this case, with a good signal model, we can simulate the
source and learn as much as possible via simulations.
Finally, the most important reason why signal models are
important is that they often work extremely well in practice,
and enable us to realize important practical systems—e.g.,
predicti gnition systems, i Sys-
tems, etc., in a very efficient manner.

These are several possible choices far what type of signal
model is used for characterizing the properties of a given
signal. Broadly one can dichotomize the types of signal
maodels into the class of deterministic models, and the class.
of statistical models. Deterministic models generally exploit
some known specific properties of the signal, e.g., that the
signal is a sine wave, or a sum of exponentials, etc. In these
cases, specification of the signal model is generally straight-
forward;all that is required i i alue:
of the p of the signal model (e.g., amplitude, fre-

nature (e.g., speech samples, temperature
music, etc.). The signal source can be stationary {i.e., its sta-
tistical properties do not vary with time), or nonstationary
(i.e., the signal properties vary over time). The signals can
be pure {i.e., coming strictly from a single source), or can
be corrupted fram other signal sources (e.g., noise) or by
transmission distortions, reverberation, etc.

A problem of fundamental interest is characterizing such
real-world signals in terms of signal madels. There are sev-
eral hyoneis i lyi | models.
First of all, a signal madel can provide the basis for a the-
oretical description of asignal processing systemwhich can
be used to process the signal so as to provide a desired out-

it. For pleif weare i in ing aspeech
signal corrupted by noise and transmission distortion, we
can use the signal model to design a system which will opti-
mally remove the noise and undo the transmission distor-
tion. A second reason why signal models are important is
that they are potentially capable of letting us learn a great
deal about the signal source (i.e., the real-world process
which produced the signal) without having to have the
source available. This property is especially important when
the cost of getting signals from the actual source is high.

Manuscript received January 15, 1988; revised October 4, 1986,

The author is with AT&T Bell Laboratories, Murray Hill, N] 07974~
2070, USA.

IEEE Log Number 8825949,

quency, phase of asine wave, amplitudes and rates of expo-
nentials, etc.). The second broad class of signal models is
the set of statistical models in which one tries to charac-
terize only the statistical properties of the signal. Examples
of such statistical models include Gaussian processes, Pais-
son processes, Markov processes, and hidden Markov pro-
cesses, among others. The underlying assumption of the
statistical model is that the signal can be well characterized
as a parametric random process, and that the parameters
of the stochastic process can be determined (estimated) in
a precise, well-defined manner.

For the applications of interest, namely speech process-
ing, both deterministic and stochastic signal models have
had good success. In this paper we will concern ourselves
strictly with one type of stochastic signal model, namely the
hidden Markov model (HMM). (These models are referred
o as Markov sources or prohabilistic functions of Markav
chains in the communications literature.) We will first
review the theory of Markov chains and then extend the
ideas to the class of hidden Markov models using several
simple examples. We will then focus our attention on the
three fundamental problems’ for HMM design, namely: the

"The idea of characterizing the theoretical aspects of hidden
T | problems
is due to Jack Ferguson of IDA (Institute (urD!lEnsEAmlysls) wha

introduced it in lectures and writing.

0018-9219/89/0200-0257501.00 € 1989 IEEE

COURSE-RELATED MATERIALS:

* Biological Review Slides: Gene and genome structure in prokaryotes and eukaryotes
and characteristics of sequence data; Genbank and other sequence databases.

Nature paper on human genome sequence

Nature paper on mouse genome sequence

Siepel et al. paper on PhyloHMMs & sequence conservation

Rabiner tutorial on HMMs

HMM scaling tutorial (Tobias Mann)

.

Option 2: Tobias Mann & logs

Numerically Stable Hidden Markov Model
Implementation

Tobias P. Mann

February 21, 2006

Abstract

Application of Hidden Markov Models to long observation sequences entails the
ation of extremely small probabilities. These probabilities introduce numerical
instability in the computations used to determine the probability of an observed se-
quence given a model, the most likely sequence of states, and the maximum likelihood
model updates given an observation sequence. This paper explains how to handle small
probabilities by working with the logarithms of probabilities, rather than resorting to
alternativ

rescaling procedures.

1 Introduction

A practical issue in the use of Hidden Markov Models (HMMs) to model long sequences is
the numer aling of conditional probabilities. Conditional probabilities must be com-
puted in order to efficiently estimate the most probable sequence of states for a model given
some data. Conditional probabilities are also computed in the process of estimating HMM
parameters given training data. The numerical issue arising from the computation of condi-
tional probabilities is that the probability of observing a long sequence given most models is
extremely small. The use of these extremely small numbers
ical instability, and makes application of HMMs to genome length sequences challenging.
There are two common approaches to dealing with small conditional probabilities. One
approach is to rescale the conditional probabilities using carefully designed scaling factors.
The other approach is to work with the logarithms of the conditional probabilities. This
paper explains how to implement the second approach, and argues that computing with

n computations leads to numer-

logarithms has advantages over the scaling factor approach.

A common approach to eliminating numerical problems is to rescale the conditional prob-
abilities by computing scaling factors. These scaling factors are designed to bring various
conditional probabilities to within a range easily handled by standard machine floating point
representation. In an excellent tutorial on HMMs, Rabiner [1] notes the potential numerical
problems and outlines how to compute scaling factors, but the applicaton of these scaling
factors is incompletely specif slightly different scaling factor derivation is provided in
another nice tutorial by Minka [2], but Minka doesn’t provide details on computing Baum
Welch updates to estimate HMM parameters. Rescaling approa
numerical instability of computing with very small conditional probabilities, but they also
make the resulting code more complicated to understand and debug.

An alternative to the rescaling approach is to compute the logarithms of the conditional
probabilities '. Working with logarithms has the advantage that scaling constants can be

eliminated and Baum Welch parameter updates do not need to be re-derived: in addition,
TThis is suggested on page 78 of Durbin et al (3] I 9

>

a solution to the

hes off

1



Homework 8 Overview

Notes for debugging

1. Try calculating some simple forward and backward probabilities by
hand to check your algorithm

2. The likelihood at each iteration should increase; if it decreases, then
you have a bug

3. Have a print statement in your program to keep track of iterations as

your program is running. The assignment will provide an estimate on
the number of iterations to converge.

20



Homework 8 Questions ?

T.stetteri

T.profundus

P.furiosus

M.fervidu
‘P.horikoshii’

) - P.abyssi !
a M.jannaschii o

kinawa trough o
Fig. 3. Phylogenetic trees representing the relatedness of P. horikoshii

A+T-rich state

ACGGCTTTGACCAC
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