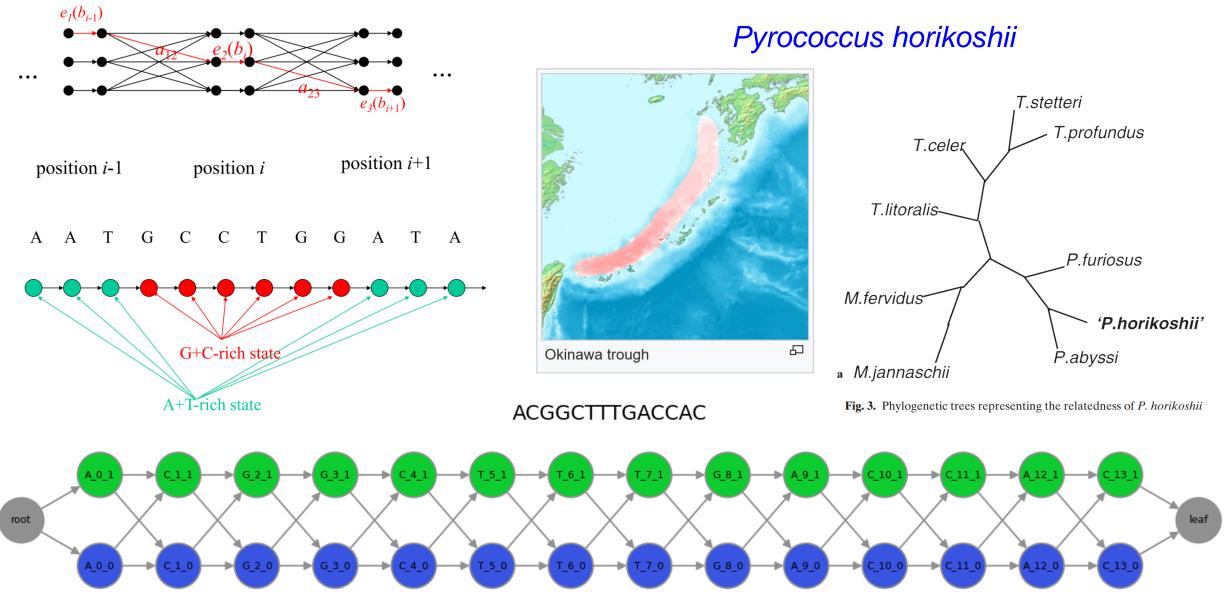
Genome 540 Discussion

Conor Camplisson

March 7th, 2023

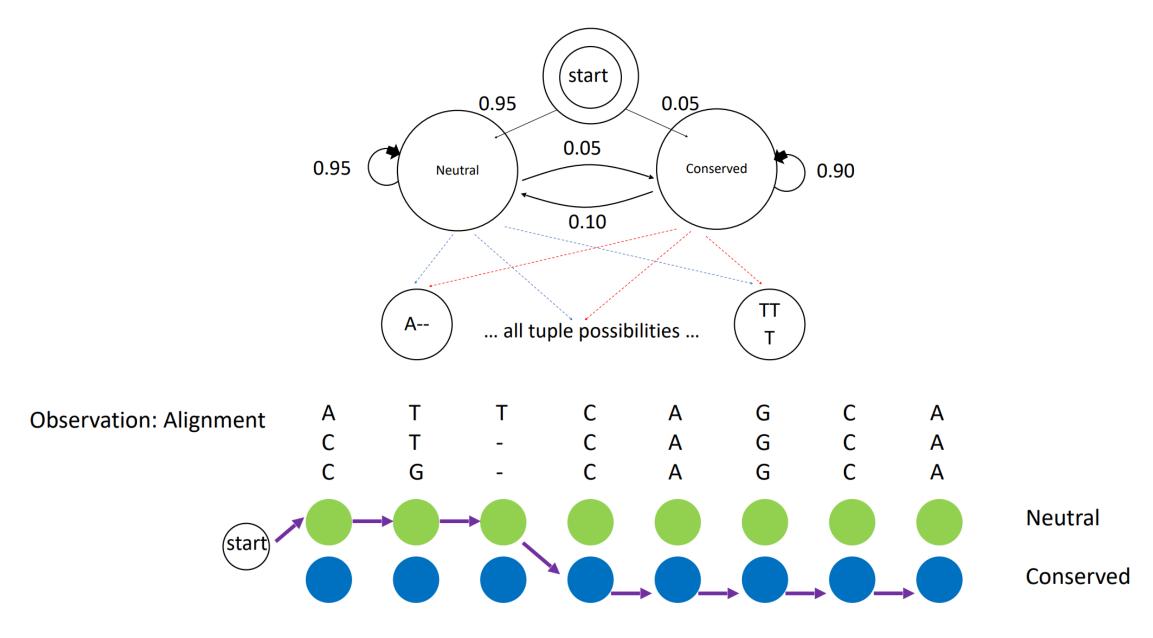

Outline

• Homework 8 Wrap-up

Outline

• Homework 8 Wrap-up

Homework 8 Overview


http://bozeman.mbt.washington.edu/compbio/mbt599/assignments/hw8.html

Outline

Homework 8 Wrap-up

- ENCODE region 010 (chromosome 7)
- Multiple alignment of human, dog, and mouse
- 2 states:
 - neutral (fast-evolving)
 - conserved (slow-evolving)
- Emitted symbols are multiple alignment columns (e.g. 'AAT')
- Viterbi parse (no iteration)

HW9 – Model Structure

HW9 – Model Parameters

Alignment Column Counts Provided

Ancient	Repeat S	equences	Putative	e Functi	ional Sites
AAA AAC AAT AAG AA- ACA ACC ACT ACG AC- ATA ATC ATT ATG AT- AGA AGC AGT AGG AG- A-A A-C A-T A-G	10222095 481243 420185 1415675 273456 852624 179459 99493 167810 29636 874547 113150 220714 185789 32253 2116012 139953 131553 881616 73372 760405 57350 56348 155911	1 st base: hur 2 nd base: do 3 rd base: mo	g	AAA AAC AAT AAG AA- ACA ACC ACT ACG AC- ATA ACG AC- ATA ATC ATT ATG AT- AGA AGC AGT AGG AG- A-A A-C A-T A-G	2375583 21337 10886 56328 3205 33210 12122 2270 5187 374 21805 2871 7426 4369 294 81919 4455 2735 50413 796 6234 557 350 1349
A	39186			A	1282

Calculate Emission Probabilities

- For 'neutral' state emission probabilities, use observed frequencies in neutral data set (ancient repeat sequences)
- For 'conserved' state emission probabilities, use observed frequencies in functional data set

Initiation, Transition Probabilities

• Given in problem set description

HW9 – Input Data

Original maf format:

- Sequences broken into alignment blocks based on the species included
- Official file format specs

Homework file format:

- Only 3 species
- Gaps in human sequence were removed and ambiguous bases replaced with 'A' for simplicity

<pre># chrX:</pre>	152767699-152767743
hg18	ATAAAAACATTAAAAAAAAAAAAAAGCACAGGACTTGGTCTTGGACC
canFam2	
mm9	
# chrX·	
	152767744-152767853
	CAAGTTAGAGCTAGGCCATGCTTGCTTAAAGGAGTGGCTGTAATTTTAAACAAGGCTAGTGGGAAAGT
hg18 canFam2	

HW9 – Output

Output

- State and segment histograms
- Parameter values
 - Initiation/transition probabilities you were given in the assignment
 - Emission probabilities you calculated from neutral and conserved data sets
- Coordinates of 10 longest conserved segments (report positions relative to the start of the chromosome)
- Brief annotations for the 5 longest conserved segments (look at UCSC genome browser, and make sure using the correct genome version, e.g. hg18)

HW9 – Output

State Histogram: 1=5 2=3

Segment Histogram: 1=2 2=1 Initial State Probabilities: 1=0.90000 2=0.10000

Transition Probabilities: 1,1=0.99000 1,2=0.01000 2,1=0.20000 2,2=0.80000 Emission Probabilities: 1,A--=0.20000

1, A-A=0.20000 1, A-C=0.20000 1, A-G=0.20000 1, A-T=0.20000 . 2, A--=0.10000 2, A-A=0.20000 2, A-C=0.25000 2, A-G=0.25000 2, A-T=0.20000 etc..

Longest Segment List:

116741000 116752000 116745000 116756000 etc.. (give 10 longest from state 2)

Annotations:

Start: 116741000 End: 116752000 Overlaps with exon3 of the protein coding gene cMyc

Start: 116745000 End: 116756000 Overlaps with exon4 of the protein coding gene cMyc

etc.. (give 5 longest)