Genome 540 Discussion

January 4th, 2024
Clifford Rostomily

UNIVERSITY OF WASHINGTON

Genomejziences

Introductions
m Whoam I? m Who are you?
o 2nd year Genome Sciences o Name?
o Trapnell lab o Department?
o Took this course last year o What you hope to take
o Gene away from this course?

regulation/development

Single-cell genomics

Zebrafish

o I like to ski/trail
run/mountain bike/fish

o O

>
Agenda

m Homework advice
m Choosing a language
m C++ tips

Homework advice

Start Early!

e Start early
e Submit early
o Ideally
before the
weekend
IT’s due

H1
H2
H3

#1
#2
#3
#4

#5

>
Using A.L

m Do use it as a tool
o Translating python to C++
o Learning a new language

o Debugging specific problems
m What does this error mean?
o Use it like a quicker version of stack overflow

m Don’t ask it to do your assignment

o You won’t learn anything
o If it’s wrong, debugging might be harder than doing the
assignment

g
Write readable code - help me help you

m Use infuitive variable/function names
X = 0 vs. number_of_friends =0

m Comments
o Big picture

Function to compute number of friends from comment quality
o Confusing stuff
this makes me feel like I have friends
num_friends = (a™-exp(24*b))/5 - (a™-exp(24*b))/5

m Use lots of functions
m Don’t make code hard to read for a negligible speed up

g
Also keep your code organized

m Github for easy sharing eftc.
m Keep a nice file structure for your assignments

v Assignment_9
v data
= ENmO006_short.aln
= ENmO010.aln

= STATE1_anc_rep_counts.txt

= STATE2_codon1_2_counts

v results

= hw9_template.txt

= Rostomily_HWS9 copy.txt

= Rostomily_HWS.txt

= Rostomily_ HWS.txt.gz
v SIC

= hws

:+ hw9.cpp

xt

PLOS COMPUTATIONAL BIOLOGY

& OPEN ACCESS

EDUCATION

A Quick Guide to Organizing Computational Biology Projects
William Stafford Noble [=]

Published: July 31, 2009 « https://doi.org/10.1371/journal.pcbi. 1000424

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

>
How to approach assignments

AN N

Understand the algorithm

Outline your code

a. Write skeleton code

Fill it In

Evaluate if things are working with small tests

a. E.q. Test that a fasta loads by creating a small fasta and printing it,
or test code on a small substring you know the answer to.
b. Try to include edge cases in your tests

Compare your results on the test data with diff

Choosing a language

g
Which language should I use?

m You are free to choose
m Most people use C++, C, or Python
m What’s the difference...

g
Compiled vs. Interpreted Languages

Machine

Code W Code (OO].O].O].) 0u'|'pu'|'
print(“hello world™) J > hello world

https://www.youtube.com/watch?v= C5AHaS1mOA

*** The following explanations are gross oversimplifications

https://www.youtube.com/watch?v=_C5AHaS1mOA

g
Compiled vs. Interpreted Languages

Code Compi Machine Code Execution
P . ompiler
print(“hello world™) 0101010100100101
x=1 0001010011111001
y=2 0100101001110101
Z=X+Yy 0101001010010100
K|orin‘r(z) / QOlOlOlOOOOOOlll/ * *
)) Memory
MyScript.c MyScript.o

e Compiler translates code into machine code
e Machine code can be run over and over (assuming correct
OS/architecture)

g
Compiled vs. Interpreted Languages

[Interpreter }

/ Code \] Mggl‘c‘llene \ 4 Execution A
print(*hello world™) - — 000101010 = [cru }
X =1 5 010010010 ——»

y =2 ' 111010010 —» |y A

Z=X+Y 4. 010010010 ——p

print(z) > 100100100 —» [Memery }
& v o Q o

e Program executed line by line at runtime
e Need an interpreter o run program

g
Compiled vs. Interpreted Languages

Compiled Interpreted
Input Entire program A single statement
Intermediate Machine code None
Speed Faster Slower
Debugging Errors reported after Errors reported at runtime

compiling and running

g
Static vs. Dynamic, Strong vs. Weak

m Python is a dynamic strongly typed language

o Don’t need to declare type: x =5

X =5
y = 3.14

sum result = X + vy

m C++ is a static weakly typed language
o Need to declare type: int x = 5;

g
Which language should I use?

Your choice

C++ Is my recommendation

C++ will give the biggest improvement on the 1st
assignment

Python can work but you have to be careful with
memory

Python will be ~10x slower even if everything is perfect
Python will be easier to learn/write/debug

C++ Tips

Created by Bjarne Stroustrup in 1983.

Derived from C

Supports classes and objects
Standardized by the
International Organization for
Standardization (ISO)

Used everywhere

g
“Hello World” In C++

In terminal compile Run the executable
helloworld.cpp helloworld.cpp to an
executable

include <}ostream>
int main() K
std::cout << "Hello World!" << std::endl; > $ g++ -0 helloworld helloworl—d'Cpp

return 0; I

$./helloworld

Compiler Your script

Desired
executable
name

Ouftput:
Hello World!

Using an IDE

C/C++
C/C++ IntelliSense, debugging, and code bro...
Microsoft ug §s3

C/C++ Extension Pack
Popular extensions for C++ development in ...
2 Microsoft §3%

C/C++ Themes
Ul Themes for C/C++ extension.
2 Microsoft §0%

CMake
CMake langage support for Visual Studio Code

twxs {C}

CMake Tools
Extended CMake support in Visual Studio Co...
2 Microsoft a0 §e3

VSCode extensions can
handle compilation and
execution

All you have to do is hit play!

helloworld.cpp X

TAing > test > helloworld.cpp > & main()

include <iostream>

int main() f
std::cout << "Hello World!" << std::endl;
return 0;

o

g
Pointers

m Pointers are memory addresses, which point to variables

Address of b / Ox7fffffffd7a0 \ > Ox7fffffffd79c \ Address of a

Value of b Ox7fffffffd79c 1 Value of a
(address of a)

int *b = &a intfa=1

k Pointer / k Variable /

g
Pointers

m Use & to reference an address
m Use * to dereference an address or declare a pointer

"\n" << "Values of a, b, and c:" << "\n";

"a="<<a<<" --->this is the value of a" << "\n";
"b =" << b << " ---> this is the value of b (the address of a)" << "\n";

'

"c =" << c << " ---> this 1s the value of c" << "\n";

"\n" << "Addresses of a, b, and c:" << "\n";

"§&@ = " << & << " ---> a's address is the same as the value of b (because b is a pointer)" << "\n";
"&b '<< &b << " ---> b's address is different from that of a" << "\n";

"&c " << &€ << " ---> c's adress is the same as a's" << "\n";

"The (dereferenced) value of b:" << "\n";
<< *p << " ---> b's dereferenced value is the same as a's" << "\n";

g
Arrays vs. Vectors

m Vectors are like arrays, but they are dynamic
Vectors can be resized, arrays cannot
m Adding new elements to a vector is slow and dynamic
resizing may take up more memory than is needed
o You should reserve the amount of memory you need when
you declare a vector!!!

int my_array[3] = {1,2,3}; // d is an array of integers

std::vector<int> my_vector = {1,2,3}; // e is a vector of integers

my_vector.push_back(4); // add 4 to the end of my_vector

my_vector.pop_back(); // remove the last element of my_vector so that it is the same size as my_array
my_vector.reserve(100); // reserve space for 100 integers in my_vector

>
Pointers to arrays, and arrays of pointers

m Pointer to an array
o int (*pntr_array)[5]; // a pointfer to an array of 5 ints

m Array of pointers

o int *pntr_array[5]; // an array of 5 pointers to integers
m Pointer to a vector

o std:vector<int>*

m Vector of pointers
o std:vector<int*>

g
Arrays dare pointers to blocks of memory

m Arrays just point to the start of @
memory block

m Array indices are just pointer const char “word = “hello’;
arithmetic and dereferencing (word + 1) = ello
combined —p Jodol=h

o a[l2] is the same as *(a + 12) word[1] = e
o &a[3]isthesameasa+ 3 *(word + 1) = e

m Large arrays should be

. int n = some_large_number;
dynamically allocated (on the —» 4 - rewdoubleln]
heap)

m Make sure you delete them ——P delete[] d;

g
Structs are a custom data type in C++

m Structs are like a very simple class

Used to store data

m Can contain variables of any type (including pointers and
other structs)

struct my_struct {
int my_int;
double my_double;
std::istring my_string;
std::vector<int> my_vector;

H

>
Reading Files

] read file(std::string filename, std::string& contents, int& num lines) {
S ifstream input(filename);
g line;

le (std::getline(input, line
contents += line + "\n";
num lines += 1;

g
Namespaces and libraries

m A namespace is a collection of libraries
m The standard (std) namespace is the most

commonly used
o Many other namespaces (e.g. boost, Qt, Eigen, OpenCV)

m You shouldn’t need anything other than the
standard namespace for this course

>
Debugging

m Print intermediate to the terminal to see why

something is breaking

o Poor man’s debugger
o std:cout << “value of x = “ << x << std::end|

m ..Or yOu can use a debugger

o VSCode has a decent debugger for C++ and you can step
through functions

Python Tips

>
Python tips

Numpy
Pandas
Cython

Faking pointers
o Mutable types - hitps://realpython.com/pointers-in-python/

Slack me for other questions

https://realpython.com/pointers-in-python/

g
what do you want to learn about?

Topics for future discussion sections?

» Scalable and reproducible bioinformatics pipelines (Shakemake)
» General programming tips

» Specific languages: Python, C++, Unix tools

- Additional applications of HMMs

« Dynamic programming

* Machine learning

* Version Control/Github

« Jupyter Notebooks/Reproducibility

