Genome 540 Discussion

February 20th, 2024 Clifford Rostomily

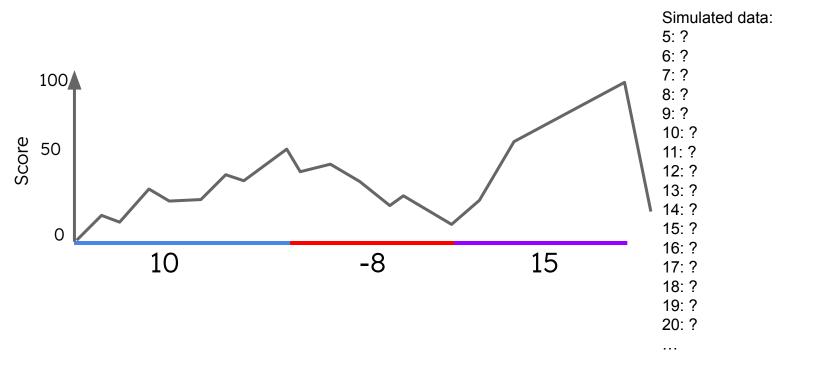
Assignment 7

Overview

- Part 1: Use your predicted D-segments from hw6 to
 - Generate a new scoring scheme
 - Simulate background sequence
- Part 2: Run your D-segment program on the background and compare to the real data
- Part 3: Answer some questions

Part 1: New scoring scheme

```
Background frequencies:
                                                                 0={#.###}
Read start histogram for non-elevated copy-number
                                                                 1={#.###}
segments:
                                                                 2={#.###}
0=331908 - 8422401 (# Ns., don't forget this)
                                                                 >=3={#.###}
1=19439
2=4272
                                                                 Target frequencies:
>=3=1332
                                                                 0={#.###}
                                                                 1={#.###}
Read start histogram for elevated copy-number segments:
                                                                 2={#.###}
0=1656
                                                                 >=3={#.###}
1=542
2=352
                                                                 Scoring scheme:
>=3=499
                                                                 0={#.###}
                                                                 1={#.###}
                                                                 2={#.####}
log2(target freg./background freg.)
                                                                 >=3={#.###}
```


Part 1: Simulate new background sequence

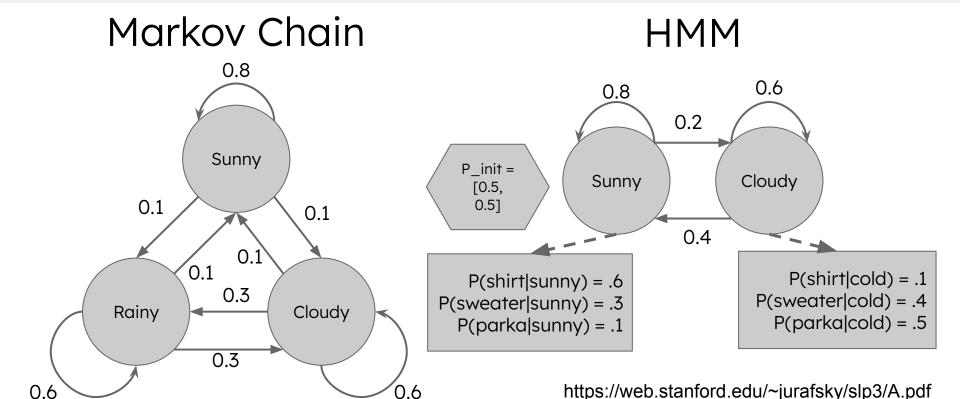
```
N = length of sequence to be simulated (length of seq. In HW6 - 8,422,401)
bkgd[r] = frequency of background sites with r read starts (r = 0, 1, 2, 3)
for each i = 1...N
    x = random number between 0 and 1 (uniform distribution)
    if x < bkgd[0]
        sim_seq[i] = 0
    else if x < bkgd[0] + bkgd[1]
        sim_seq[i] = 1
    else if x < bkgd[0] + bkgd[1] + bkgd[2]
        sim_seq[i] = 2
    else
        sim_seq[i] = 3</pre>
```

Part 2: Run D-seg and compare

```
Real data:
                                                                     Simulated data:
5 {# of segments with score >= 5}
                                                                     5 {# of segments with score >= 5}
6 {# of segments with score >= 6}
                                                                     6 {# of segments with score >= 6}
7 {# of segments with score >= 7}
                                                                     7 {# of segments with score >= 7}
list all the segment score counts for scores
                                                                     list all the segment score counts for scores
between 5 and 30
                                                                     between 5 and 30
(only first/last 3 shown here)
                                                                     (only first/last 3 shown here)
28 {# of segments with score >= 28}
                                                                     28 {# of segments with score >= 28}
29 {# of segments with score >= 29}
                                                                     29 {# of segments with score >= 29}
30 {# of segments with score >= 30}
                                                                     30 {# of segments with score >= 30}
```

Example

Example



Part 2: Run D-seg and compare

```
Ratios of simulated data: N_{seg(5)}/N_{seg(6)} \text{ $\#$ of segments with score $>= 5 / \# of segments with score $>= 6$} 
N_{seg(6)}/N_{seg(7)} \text{ $\#$ of segments with score $>= 6 / \# of segments with score $>= 7$} 
N_{seg(7)}/N_{seg(8)} \text{ $\#$ of segments with score $>= 7 / \# of segments with score $>= 8$} 
\vdots
\vdots
\vdots
\vdots
N_{seg(7)}/N_{seg(8)} \text{ $\#$ of segments with score $>= 27 / \# of segments with score $>= 28$} 
N_{seg(27)}/N_{seg(28)} \text{ $\#$ of segments with score $>= 28 / \# of segments with score $>= 29$} 
N_{seg(29)}/N_{seg(30)} \text{ $\#$ of segments with score $>= 29 / \# of segments with score $>= 30$}
```

HMM Primer

Markov Chain vs. HMM

Markov Chain vs. HMM

Markov Chain

HMM

What is the probability of observing this sequence of states?

What are the most probable (unobserved) states given my observations?

e.g. I observed the sequence ATG, am I in a gene?

Reminders

- HW7 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template