Genome 540 Discussion

February 27th, 2024 Clifford Rostomily

Assignment 7 Questions?

- Part 1: Use your predicted D-segments from hw6 to
 - Generate a new scoring scheme
 - Simulate background sequence
- Part 2: Run your D-segment program on the background and compare to the real data
- Part 3: Answer some questions

Assignment 8

HMM Tasks

Rabiner 1989:

Likelihood: Given an HMM λ = (A, B) and an observation sequence O, determine the *likelihood* P(O| λ).

Decoding: Given an observation sequence O and an HMM λ = (A, B), discover the *best hidden state* sequence Q.

Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM *parameters A and B*.

Example

Your dog is very moody and you want to know when they **like** or **hate** you so you start recording what they are doing when you get home everyday...

Model

Baum Welch (Forward/Backward) - "Training" an HMM

- 1. Step 1: Expectation
 - a. Compute the forward probabilities
 - b. Compute the backward probabilities
- 2. Step 3: Maximization
 - a. Update the transition and emission probabilities

Forward Algorithm - Likelihood of an observed sequence

- 3 steps:
- 1. Initialization
- 2. Recursion
- 3. Termination

Forward Algorithm - Likelihood of an observed sequence

Backward probabilities: probability of seeing the observations from time t + 1 to the end

Backward probabilities: probability of seeing the observations from time t + 1 to the end

 $b_{t}(i) = b_{t+1}(L)*a_{t+1}*e(L|L) + b_{t+1}(H)*a_{t+1}*e(L|H) **Initialize assuming b_{t}(i) = 1$

 $b_{t}(i)=\sum_{j}b_{t+1}(j)*a_{ij}*e_{j}(t+1)$

Sleeping

Calculating the transition probabilities

Calculating the transition probabilities

Probability of observations constrained on a specific transition

Probability of observations given the model

$$\underline{\alpha}(i,j) = \frac{\sum_{t=1}^{l-1} P_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} P_t(i,k)}$$

Calculating the emission probabilities

$$\gamma_{t}(j) = \frac{f_{t}(j)b_{t}(j)}{P(O|\lambda)} = \frac{f_{t}(j)b_{t}(j)}{\sum_{i=1}^{N} f_{t}(j)b_{t}(j)}$$
Probability of being in state j at time t given the observation sequence O and the model

$$e_t(v_k|j) = \frac{e_t(v_k|j)}{e_t(v_k|j)} = \frac{e_t(v_k|j)}{e$$

$$\mathbf{e}_{t}(\mathbf{v}_{k}|\mathbf{j}) = \mathbf{e}_{j}(\mathbf{v}_{k}) = \frac{\sum_{t=1,Ot=vk}^{T} \mathbf{y}_{t}(\mathbf{j})}{\sum_{t=1}^{T} \mathbf{y}_{t}(\mathbf{j})}$$
 Sum of all $\mathbf{y}_{t}(\mathbf{j})$ where the observed symbol = \mathbf{v}_{k}

Avoiding vanishing probabilities

- Scaling
 - Good tutorial
- Work in log space
 - o Mann 2006

Scaling

lacktriangle When computing forward probabilities, also compute a scaling factor c_{t}

$$c_{\dagger} = \frac{1}{\sum_{i=1}^{N} f_{\dagger}(i)}$$

- New forward probabilities at time t are multiplied by c₊
- Use c₊ for scaling backward probabilities as well
- To get back true forward/backward probabilities

$$f_{\dagger}^*(i) = (\prod_{t=1}^t c_t) f_t(i)$$

Reminders

- HW7 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template