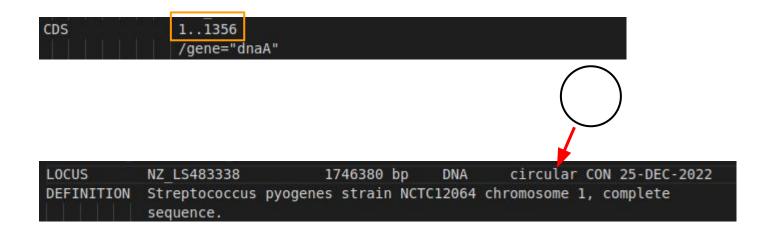
Genome 540 Discussion

January 30th, 2024 Clifford Rostomily



Agenda

- Assignment 3 Wrap Up
- Assignment 4

Assignment 3 Wrap Up

Edge Case

Any questions?

- 1. Parse a genbank file (.gbff) and...
 - a. Extract all CDS features
 - b. Read in the sequence
- 2. Build a site model for translation start sites (TSS)
 - use CDS features to get nucleotide frequencies +/- 10bp around all TSS (21bp total including TSS)
 - b. Use sequence to get nucleotide frequencies throughout the genome *on both strands*
 - c. Compute the weights using the log2 ratios of the frequencies
- 3. Use the site model to compute scores at
 - a. Every annotated TSS
 - b. The entire genome (21bp window) on both strands

Assignment 4

Overview

Part 1: Write a program to find the highest-weight path in a directed acyclic graph using dynamic programming

Part 2: Run your program on a linked list created from DNA sequence

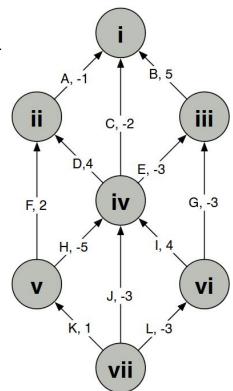
Program 1: Highest weight path

- 1. Convert graph to text file of **vertices** and **edges** by hand
- 2. Use dynamic programming to find the max weight path through the graph (Lectures 7/8)
 - a. Overall
 - b. With constraints (START/END)
- 3. Output
 - a. Path Score
 - b. The start/end vertex on the path
 - c. Labels for all the edges on path (in order)

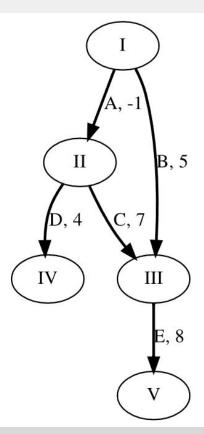
V vii START V vi V v ... E A ii i -1 E B iii i 5

Example:

Part 2 Score: 4.0 Begin: vii End: i Path: LIDA


Part 1

Score: 8.0


Begin: vi

Path: ID

End: ii

Example - Unconstrained

my_graph.txt:

VΙ

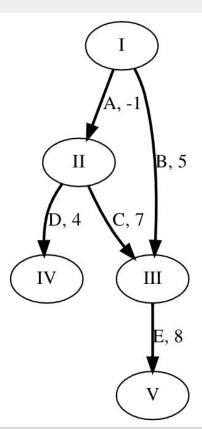
VΙΙ

V III

VIV

VV

EAIII-1


EBIIII5

ECIIIII7

EDIIIV4

E E III V 8

Example - Unconstrained

my_graph.txt:

V I V II

V III

VIV

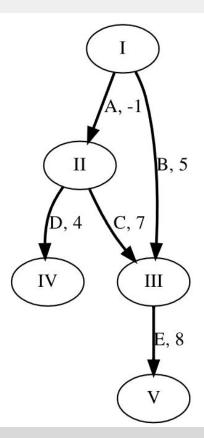
VV

EAIII-1

EBIIII5

ECIIIII7

EDIIIV4


E E III V 8

Score: 15

Begin: II End: V

Path: CE

Example - Constrained

my_graph_constrained.txt:

VISTART

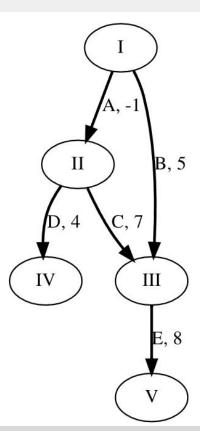
V II

V III

VIV

V V END

EAIII-1


EBIIII5

ECIIIII7

EDIIIV4

E E III V 8

Example - Constrained

my_graph_constrained.txt:

V I START

V II

V III

VIV

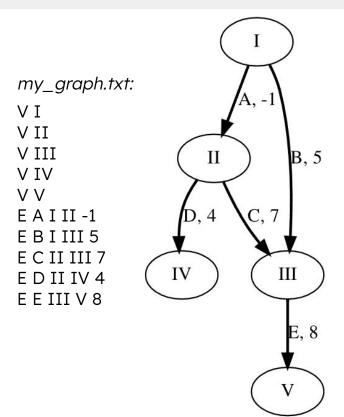
V V END

EAIII-1

EBIIII5

ECIIIII7

EDIIIV4

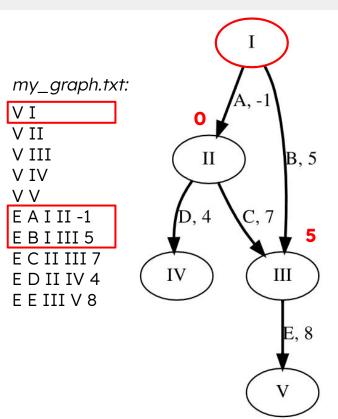

E E III V 8

Score: 14

Begin: I

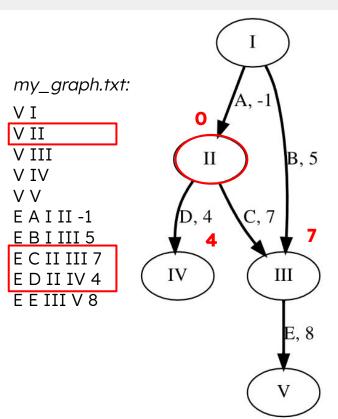
End: V

Path: ACE

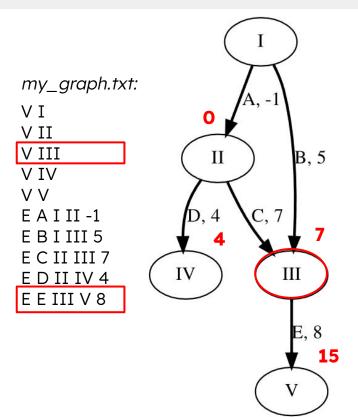


- Assume that graph file is depth ordered
- Vertex I has no parents so points to itself

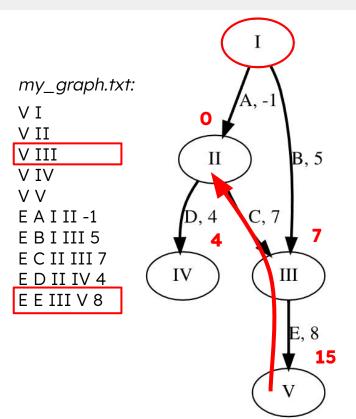
Vertex	Í	II	III	IV	V
Highest Weight Parent	I	II	III	IV	V
w(v) (Vertex weight)	0	0	0	0	0


Best Path Start

Ι


Vertex	I	П	Ш	IV	V
Highest Weight Parent	I	II	I	IV	V
w(v) (Vertex weight)	0	0	5	0	0

Best Path Start III

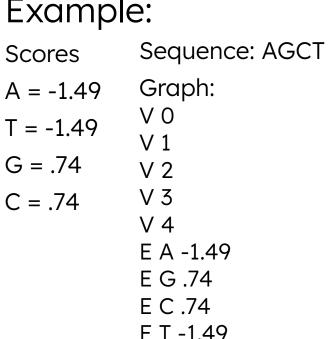

Vertex	1	П	Ш	IV	V
Highest Weight Parent	I	II	II	II	V
w(v) (Vertex weight)	0	0	7	4	0

Best Path Start III

Vertex	I	П	Ш	IV	V
Highest Weight Parent	I	II	II	II	III
w(v) (Vertex weight)	0	0	7	4	15

Best Path Start

Vertex	1	II	111	IV	V
Highest Weight Parent	I	II	II	II	III
w(v) (Vertex weight)	0	0	7	4	15


Best Path Start V

 Now traceback to find highest weight path

Program 2: DNA Linked List

- 1. Create a linked list from a DNA sequence and a scoring scheme
 - a. Positions are vertices
 - b. Bases are edges
- 2. Run your program from part 1 on the graph

Example:

G. 0.74

C, 0.74

-1.49

HW4 Summary

Program 1:

Use dynamic programming to find the highest weight path in an arbitrary WDAG

Program 2:

Make a linked list from a fasta and run program 1 on it

Reminders

- HW4 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template